
310

appendix A
HTML5 and related

specifications

It would be odd if you hadn’t heard buzzwords such as HTML5, CSS3, and Node.JS

used inaccurately, or even incorrectly, at some point. In particular, HTML5 has

become a catchall word for emerging web technologies. For example, one of the

authors once met a marketer who said, “I can create an SEO-optimized video game

with HTML5.” At the least, it’s important to know what an HTML5 specification is,

and what it isn’t, to keep you from making a fool of yourself. For appendix A, we’ll

cover what’s officially HTML5 and what isn’t.

A.1 The origins of HTML5

You might be surprised to learn that the Worldwide Web Consortium (W3C) didn’t

advocate HTML5 in the beginning. W3C considered HTML to be dead after HTML4

and was working on XHTML2, continuing the trend of web markup based on an

XML syntax. If you thought XHTML1 was strict, the second version promised to take

This appendix covers

■ Development of the HTML5 specification

■ Popular W3C-accepted HTML5 specifications

(non-drafts)

■ Related, popular specifications (non-HTML5)

311The origins of HTML5

things further. As a result, many members in the W3C felt a need for a change of direc-

tion, and the WHATWG (Web Hypertext Application Technology Working Group) was

formed to begin work on HTML5.

HTML5 started off as Web Apps 1.0 and Web Forms 2.0, then later merged into a

single specification: HTML5. Before long, W3C began to realize that there was merit to

the case for HTML and began working on version 5 of HTML (not quite the same as

HTML5, it should be noted), taking the work of WHATWG as the starting point for the

new standard. For a time, this only added to the confusion. Not only was WHATWG

continuing to work on HTML5, but W3C was also working on version 5 of HTML,

derived from an earlier version of the HTML5 specification, while it was also continu-

ing work on XHTML2. Confused? We certainly were.

 Since that time, XHTML2 finally died, and developers at both WHATWG and W3C

worked on the HTML5 specification, with each maintaining a separate version, albeit

both overseen by the same editor. Why the need for two separate groups? Politics. For

various reasons, some stakeholders in the process can’t join WHATWG and others can’t

join W3C. As a result, both groups continue to work concurrently.

A.1.1 WHATWG vs. W3C

The goal of WHATWG is to continually update the “HTML Living Standard” based on

feedback from all stakeholders to maintain a position slightly ahead of current imple-

mentations. WHATWG has given up on version numbers and sees the standard as an

evolving document. It aims to stay just ahead of the functionality in browsers, provid-

ing a forum for everyone to agree on the details of any new feature and documenta-

tion of the final implementations.

W3C is sticking with the traditional version-based approach. We can expect HTML5

to be followed by HTML6 and HTML7, all using a snapshot of the WHATWG document

as a basis. As a result, W3C has split what exists as one specification at the WHATWG

into (currently) eight different specifications so that features can develop at their own

pace without holding up the release of standards. You can find a list of the individual

specifications at WHATWG’s FAQ page: http://mng.bz/dWRb.

 Another key difference between the groups is decision making. In WHATWG, the

editor has complete control when it comes to making decisions regarding the HTML5

specification. W3C has an HTML Working Group with its own escalation process for

making decisions on disputed issues.

W3C has a large number of specifications outside of HTML, and one goal is that all

the specs should be compatible. W3C has been focused on XML-based technologies for

a number of years, and WHATWG was formed in opposition to the pure XML

approach, so this has been the underlying source of the disagreements so far. But

despite some heated discussions, the two specs are yet to diverge.

 To help you keep the key differences straight, refer to the summary in table A.1.

http://mng.bz/dWRb

312 APPENDIX A HTML5 and related specifications

The real-life interactions of thousands of smart people are, of course, more complex

than can be described in a simple table, especially when you remember that many of

these people are in both W3C and WHATWG. But this section has given you some use-

ful context if you ever have to dive into a debate on the WHATWG mailing list or the

W3C bug tracker over some detail of one of the specs when you’re just trying to figure

out which browser is “doing the right thing.”

A.1.2 So ... what is HTML5 anyway?

We consider a technology an official part of HTML5 if it’s part of the WHATWG Living

Standard or it’s one of W3C’s specifications derived from that standard. But many of

the technologies, such as CSS3, Geolocation, and the Storage APIs, that partake of the

buzzword HTML5 aren’t part of this official definition. In the next section, you’ll have

a quick review of the HTML5 technologies that are officially HTML5, and in the follow-

ing section, those that are not.

Table A.1 WHATWG and W3C compared

Topic W3C WHATWG

Membership Mostly paid members with corporate

sponsors.

Anyone can join the mailing list.

Editorial process Editor is subject to strictures of

W3C’s feedback and review

processes.

Editor is “benevolent dictator.”

HTML-related specifications

managed

8 (derived from WHATWG’s 1 spec). 1.

Non-HTML specifications

managed

Lots (e.g., CSS, DOM, SVG,

XML, RDF).

None.

Release process Versioned snapshots. Rolling release, constantly

updated.

Does it really matter what is or isn’t HTML5?

The short answer is no! When you’re building web apps, you need to pick and choose

technologies in the modern web platform based not on which spec they appear in but

on whether they do something you need and they work in browsers. Although you may

end up in some heated social network debates, you’ll receive no explicit punishment

for claiming things like Geolocation as a key part of your HTML5 app. As you’ll see,

even the authors of this book have stretched the definition of HTML5 to include sev-

eral “unofficial” technologies.

313Popular HTML5 specifications

A.2 Popular HTML5 specifications

In this section, we’ll discuss the technologies that are part of WHATWG’s HTML Living

Standard and the HTML5 family of specifications at W3C. Although the WHATWG spec

hasn’t always been called the HTML Living Standard, we’ll use that term to differentiate

it from the HTML5 spec at W3C. Each section will mention which specification at the

W3C applies and the relevant chapter or chapters in this book.

A.2.1 Semantic markup, forms

HTML5 introduces HTML elements that change how people structure website markup

and use form elements. It also gives programmers more control over their markup

through attributes such as data. These attributes can hold important metadata inside an

HTML element. This is all core HTML stuff and so is in the W3C HTML5 specification.

 You can learn about semantic markup and forms in chapters 1 and 2.

A.2.2 Video and sound (multimedia)

In the past, web developers have primarily relied on Flash or another plug-in to pro-

vide audio and video support. The HTML5 audio and video elements allow a browser

to run both, without any additional configuration. Both use the Media Element API,

which means their event systems for toggling playback, sound, stopping, and so on are

similar. This is also in the core W3C HTML5 specification.

 Audio and video are covered in chapter 8; also check out appendix I for some of

the more cutting-edge video technologies.

A.2.3 Canvas and SVG (interactive media)

The Canvas API and SVG give you the ability to create interactive media via JavaScript

programming. The first and most popular Canvas API was originally an Apple product

from Mac OS X. Developers can create raster-based graphics on the fly inside a

<canvas> element with it. Although the <canvas> element itself is covered in the core

HTML5 spec, the 2D context (the JavaScript API that lets you draw stuff) is in a sepa-

rate specification called “HTML Canvas 2D Context.” Note that although WebGL

allows Canvas to display 3D graphics, the 3D context is not officially part of HTML5

(see section A.3 for details).

SVG is an XML-based language that’s been around since 2001. All HTML5 adds is

the ability to inject SVG elements into HTML pages (it has always been allowed to

inject SVG into XHTML pages), nothing more. It’s important to understand that SVG is

a piece of HTML5 but not a specification created by it.

 Canvas, the 2D context, and SVG are covered in chapters 6 and 7; Canvas is also

used in chapter 8 to manipulate live video and in chapter 9 along with the 3D context.

314 APPENDIX A HTML5 and related specifications

A.2.4 Storage

HTML5 is associated with several storage-based APIs; the ones that are part of the

HTML5 specifications are Web Storage and Offline Applications.

 At W3C, offline apps are covered in the core HTML5 spec, and session and local

storage are covered by the Web Storage spec. Both are discussed in chapter 5.

A.2.5 Messaging

Web Messaging (cross-document and channel messaging), Server-Sent Events, and

WebSockets are all core HTML5 technologies. At W3C they are covered by three specs:

“HTML5 Web Messaging,” “Server-Sent Events,” and “WebSockets API.” Note that the

WebSockets Protocol, which describes the format of the transmitted data, is defined

by a specification at the Internet Engineering Task Force (IETF). Messaging is covered

in chapter 4 and appendix F.

A.2.6 The XML HTTP Request object

This API has existed in IE since the late 1990s and has been heavily used in web appli-

cations since Firefox implemented its version between 2000 and 2002, giving birth to

AJAX (Asynchronous JavaScript And XML). But XHR had never been documented in

any specification until WHATWG added it to its specifications in 2004. Currently, the

XML HTTP Request (XHR) object has a specification all to itself at the W3C. XHR and

AJAX are well known and well used, so even though XHR is, strictly speaking, HTML5,

we don’t cover it specifically in this book.

A.3 Popular non-HTML5 technologies

Some popular specifications and technologies are commonly mistaken for HTML5

because of their intriguing features. Although these new technologies began to

emerge around the same time that HTML5 was becoming established and fre-

quently featured in HTML5 Showcase sites and HTML5 books (including this one),

they’re not HTML5 by the definition given earlier. One good way to describe this

group of web development technologies, suggested by Bruce Lawson, is “HTML5

and friends.”

A.3.1 CSS3

CSS3 brings several amazing features to web development, such as transitions and 3D

transforms. But it’s an entirely separate specification from HTML5. There is no specific

CSS3 coverage in this book, but CSS will be used to support all of this book’s apps.

 For a gentle introduction to CSS3, see Hello! HTML5 & CSS3 by Rob Crowther

(Manning, 2012). There’s also good information on tools for CSS3 in Sass and Compass

in Action by Wynn Netherland, Nathan Weizenbaum, Chris Eppstein, and Brandon

Mathis (Manning, 2013).

315Popular non-HTML5 technologies

A.3.2 Geolocation

A lot of early HTML5 demos featured the Geolocation API. But this API has never been

a part of the HTML Living Standard or the HTML5 family of specifications at W3C.

 The Geolocation API has its own specification at the W3C; it’s covered briefly in

chapter 3.

A.3.3 Storage

We mentioned storage in the previous sections. There are two key storage technolo-

gies that aren’t part of the HTML5 spec: IndexedDB and the File System API. These are

in the Indexed Database API, File API, File API: Directories and System, and File API:

Writer specs at the W3C.

 Check out chapter 5 for more on IndexedDB and chapter 3 for the File API.

A.3.4 WebGL

The WebGL technology is based on OpenGL. The Khronos Group has taken OpenGL

and adapted it for use in web browsers; the result is WebGL. All desktop browsers

have support for WebGL. Even Microsoft, after initially being opposed to the technol-

ogy, has implemented WebGL in IE11.

A.3.5 Node.js

Many people have mistaken the new software platform Node.js (often simply called

Node) for an HTML5 API. Although it makes use of emerging web-standard technolo-

gies and improves the use of many HTML5 APIs, it’s not part of any web standard. It

runs on Google’s V8 JavaScript engine and is primarily sponsored by Joyent. This

book covers basic Node usage; for more, check out Node.js in Action by Mike Cantelon,

TJ Holowaychuk, and Nathan Rajlich (Manning, 2013). Jode.js is also covered in chap-

ter 4 and appendix E.

A.3.6 jQuery and other JavaScript libraries

JavaScript libraries followed along after the last “buzzword fad” on the web: AJAX. The

main problem they initially solved was to provide a compatibility layer over the dif-

fering browser implementations of the XHR object that underlies AJAX, but each

also added its own features. The popular Prototype.js added features and encour-

aged a style of programming inspired by the Ruby programming language; Dojo did

a similar thing except in the style of Python. For many years, the ultimate solution in

cross-browser compatibility has been the jQuery library. HTML5 doesn’t replace librar-

ies like jQuery, but it should help make them more performant. The extensive effort

to standardize browser behavior through the process of building the HTML5 spec will

also make the compatibility provided by these libraries less important. Some common

JS library features that are replaced by HTML5 are shown in table A.2.

316 APPENDIX A HTML5 and related specifications

A.4 Keeping up with the specs

The best way to keep up with the main HTML specification is to follow The WHATWG

Blog (http://blog.whatwg.org/). Reading the specification in its raw form can be

tedious, to say the least. We find it much easier to read the spec using the edition for

web authors, which is available at http://developers.whatwg.org/. This edition doesn’t

include the technical information targeted at browser vendors and is far easier to read.

 For the rest of the specifications there’s no central source. Each individual W3C

working group has its own blog and/or mailing list. One approach is to keep an eye

on the development blogs for the major browsers to find out what new features

they’re experimenting with:

■ Mozilla Hacks: https://hacks.mozilla.org/

■ Google Chrome Blog : http://chrome.blogspot.co.uk/

■ IEBlog : http://blogs.msdn.com/b/ie/

■ Surfin’ Safari: https://www.webkit.org/blog/

■ Opera Desktop Team: http://my.opera.com/desktopteam/blog/

■ Opera Mobile: http://my.opera.com/mobile/blog/

Table A.2 JS Library functionality and modern web platform equivalents

Feature JS libraries HTML5 (or related) feature

Selecting elements

by class

Nearly all The getElementsByClassName() method

was originally introduced in the HTML Living Stan-

dard; it’s currently in the DOM CORE spec at W3C.

The querySelector() and

querySelectorAll() methods are defined in

the Selectors API Level 1 spec at the W3C.

Drag and drop Scriptaculous, jQuery-UI,

ExtJS, Dojo, YUI

Added to the HTML Living Standard as a reverse

engineering of the IE feature.

Advanced form controls

(date pickers, sliders,

spinboxes, etc.)

jQuery-UI, ExtJS,

Dojo, YUI

New form controls are part of the core HTML5

specification.

Storing arbitrary data on

elements

Jquery, Dojo HTML5 has data-* attributes for storing data for

scripting.

https://hacks.mozilla.org/
http://chrome.blogspot.co.uk/
http://blogs.msdn.com/b/ie/
https://www.webkit.org/blog/
http://my.opera.com/desktopteam/blog/
http://my.opera.com/mobile/blog/
http://developers.whatwg.org/
http://blog.whatwg.org/
http://blog.whatwg.org/

317

appendix B
HTML5 API reference

In this appendix, you’ll find numerous references that give you a quick overview of

various HTML5 and related APIs. We’ve compiled lists of methods, attributes, and

events that should make it easy for you to look up how to use API information when

you need it.

 The material is broken down into three sections:

■ The HTML5 APIs

■ Other APIs and specifications, which cover Geolocation and IndexedDB

■ The File System API

We begin with the HTML5 APIs.

B.1 HTML5 APIs

In this section, we cover what you need to know for the

■ Constraint Validation API

■ API for offline web applications

■ Editing API

■ Drag and Drop API

■ Microdata API

■ APIs for Web Storage

■ Media Element API

B.1.1 Constraint Validation API

The Constraint Validation API defines a series of new attributes and methods, out-

lined in table B.1, that you can use to detect and modify the validity of a given

form element.

318 APPENDIX B HTML5 API reference

B.1.2 API for offline web applications

The API for offline web applications consists of a collection of events and a number of

DOM attributes and methods. Table B.2 lists the events.

Table B.1 Constraint Validation API

Attribute/method Description

willValidate Checks if the element validates when the form is submitted.

validationMessage Holds the error message the user will see if the element is

checked for validity.

validity An object that contains attributes representing the validity

states of the element. Each attribute defines a validation error

condition. When “getting” an attribute, a value of true is

returned if the error condition is true, otherwise false.

validity contains the following boolean attributes:

■ valueMissing (required field but has no value)

■ typeMismatch (incorrect data type)

■ patternMismatch (doesn’t match required pattern)

■ tooLong (longer than maxlength content attribute value)

■ rangeUnderflow (lower than min content attribute value)

■ rangeOverflow (higher than max content attribute value)

■ stepMismatch (not a multiple of step content attribute)

■ customError (has a custom error)

■ valid (field is valid)

checkValidity() Checks if the element is valid.

setCustomValidity(message) Sets a custom error message on the element.

Table B.2 Application cache events

Event name Description

checking Fires when checking for an update or trying to download the cache manifest for

the first time.

noupdate Fires when manifest has not been modified.

downloading Fires when the browser is downloading items in the manifest for the first

time. Also fires when the browser is downloading items after detecting a

manifest update.

progress Fires once per file as the browser downloads each file listed in the manifest. The

event object’s total attribute returns the total number of files to be down-

loaded. The event object’s loaded attribute returns the number of files pro-

cessed so far.

cached The application is cached and the download is complete.

updateready Resources have been downloaded and an update is available. The application

can use the swapCache method to switch to the new resources.

http://mng.bz/1M6o

319HTML5 APIs

Table B.3 lists the DOM attributes and methods for offline applications. All apply to

the application cache object itself, apart from the ones where an explicit root object

is listed.

The Browser State API is covered in table B.4, though this is less useful than you might

think. Deciding whether the browser is online isn’t the same thing as being able to

connect to the internet or your application. It’s merely a reflection of the browser’s

online mode.

obsolete The manifest was not found and the cache is being removed.

error The manifest or one of the resources in it was not found, or the manifest

changed while the update was in progress, or some other error has occurred, so

caching has been canceled.

Table B.3 Application cache API

Attribute/method Description

window.applicationCache Returns an application cache object for the active document.

self.applicationCache Returns an application cache object for a shared worker.

status Gets the current status of the cache:

■ UNCACHED (numeric value: 0)

■ IDLE (1)

■ CHECKING (2)

■ DOWNLOADING (3)

■ UPDATEREADY (4)

■ OBSOLETE (5)

update() Starts downloading resources into a new application cache.

abort() Cancels downloading of resources.

swapCache() Switches to the newest application cache, if a newer one

is available.

Table B.4 Browser State attributes and events

Attribute/method, event name Description

window.navigator.onLine Checks if the browser mode is online (returns true) or offline

(returns false).

online The browser’s online status has changed to online.

offline The browser’s online status has changed to offline.

Table B.2 Application cache events (continued)

Event name Description

320 APPENDIX B HTML5 API reference

B.1.3 Editing API

The Editing API allows you to implement direct editing of HTML pages loaded in the

browser. This is commonly referred to as rich-text editing; it enables the web applica-

tion to use all the formatting options available to HTML. This ability distinguishes rich-

text editing from plain-text editing that can be achieved in textarea elements and

other form inputs.

 The Editing API was created by reverse engineering the behavior of IE. The documen-

tation had always been incomplete, so there are many parts of it that exist simply because

IE has them rather than because there’s a rational explanation for their existence.

 All the methods in table B.5 are on the document object; in most cases they will apply

to any selected block of text within a contenteditable section of the current document.

As you can see, the API isn’t much use without a value to enter for command. Tables B.6–

B.8 list categories of available commands. Pass the command as a string to the meth-

ods in table B.6, for example: execCommand('bold',false,''). For more information

on these commands, see http://mng.bz/4216.

 Table B.6 lists commands for formatting inline elements.

Table B.5 Editing API

Method Description

execCommand(command, showUI,
value)

Executes the command described in the first argument.

The command argument is a string value. The showUI
argument is a Boolean value to determine whether or not

to show the default UI associated with command. The

value argument is passed to command. Not all com-

mands need a value argument.

queryCommandEnabled(command) Checks if command is supported and enabled.

queryCommandIndeterm(command) Checks if command is indeterminate (if the selected text

is part active and part inactive).

queryCommandState(command) Returns a Boolean value indicating whether command is

currently applied to the selected text.

queryCommandSupported(command) Checks if command is supported.

queryCommandValue(command) Returns command’s value, if it has one.

Table B.6 Inline formatting commands

backColor bold createLink

fontName fontSize foreColor

hiliteColor italic removeFormat

strikethroug subscript superscript

underline unlink

http://mng.bz/4216

321HTML5 APIs

Table B.7 lists commands for formatting block elements.

Table B.8 lists commands for other formatting and editing issues.

B.1.4 Drag and Drop API

The Drag and Drop API is another API that’s reverse engineered from the IE imple-

mentation. The API has three main parts: the dataTransfer object, the dataTransfer

item, and a collection of events. These are covered in tables B.9, B.10, and B.11,

respectively. A drag operation will create a dataTransfer object; this will contain one

or more dataTransfer items in the items attribute, and you can gain access to both

by listening to the events.

Table B.7 Block formatting commands

delete formatBlock forwardDelete

indent insertHorizontalRule insertHTML

insertImage insertLineBreak insertOrderedList

insertParagraph insertText insertUnorderedList

justifyCenter justifyFull justifyLeft

justifyRight outdent

Table B.8 Miscellaneous commands

copy cut defaultParagraphSeparator

paste redo selectAll

styleWithCSS undo useCSS

Table B.9 dataTransfer object

Attribute/method Description

dropEffect This is the type of operation taking place (copy, link,

move, none).

effectAllowed Contains the type of operations allowed (copy, copyLink, copy-

Move, link, linkMove, move, all, uninitialized, none).

items Returns a list of dataTransfer items with the drag data

(see table B.12).

setDragImage(element, x, y) Updates the drag feedback image with the given element

and coordinates.

addElement(element) Adds an element to the list of elements used to render

drag feedback.

322 APPENDIX B HTML5 API reference

Table B.10 lists the attributes and methods of the dataTransfer item. The data-

Transfer item defines an object being dragged to the drop zone.

Table B.11 lists the drag-and-drop events. When the application listens for these

events, it can use the event object to gain access to the dataTransfer object or data-

Transfer items. To access the dataTransfer object, use e.dataTransfer, where e is

an event object. To access dataTransfer items, use e.dataTransfer.items, where

items is a list of dataTransfer items.

types List of data formats set in the dragstart event.

getData(format) Returns the data being dragged.

setData(format, data) Sets the data being dragged.

clearData([format]) Removes data of the specified format (or all formats if omitted).

files Returns a list of files being dragged, if any.

Table B.10 dataTransfer item

Attribute/method Description

kind This is the kind of item being dragged (string or file).

type This is the data item type string.

getAsString(callback) If the data kind is string, this invokes the callback with the string

data as an argument.

getAsFile() If the data kind is file, this returns a file object.

Table B.11 Drag-and-drop events

Event name Description

dragstart Fires on the source element when the user starts to drag the source element.

drag Fires on the source element as the user is dragging the source element.

dragenter Fires on the target element when the user drags the source element into it.

dragleave Fires on the target element when the user drags the source element out of it.

dragover Fires on the target element as the user is dragging the source element over it.

drop Fires on the target element when the user drops the source element on it.

dragend Fires on the source element when the user stops dragging the source element.

Table B.9 dataTransfer object (continued)

Attribute/method Description

323HTML5 APIs

B.1.5 Microdata API

The Microdata API (table B.12) has one method on the document object and a couple

of DOM attributes on elements that have Microdata content attributes (itemscope

and itemprop).

B.1.6 APIs for Web Storage

Web Storage defines APIs on two objects, window.localStorage and window.session-

Storage; see table B.13. The APIs for both of these objects are identical.

Web Storage also defines an event, storage, that fires when the storage area changes.

This event returns a storage event object, which contains attributes to determine what

changed; see table B.14.

Table B.12 Microdata API

Attribute/method Description

document.getItems([type]) Returns a list of top-level Microdata items. If you’re looking

for a particular type of Microdata item, such as event items,

you can select all event items by specifying 'http://
microformats.org/profile/hcalendar#event' as

the type parameter. Multiple types can be specified in a space-

separated list.

element.properties Gets the element’s attributes (only if it has an itemscope
attribute).

element.itemValue Gets or sets the element’s Microdata item value (only if it has

an itemprop attribute).

Table B.13 localStorage and sessionStorage API

Attribute/method Description

length Number of items (key/value pairs) currently stored in the storage area.

key(index) Gets the name of the key at the given index.

getItem(key) Gets the value of the item at the given key.

setItem(key, value) Sets the value of the item at the given key to the value provided.

removeItem(key) Removes the item at the given key.

clear() Removes all items in the storage area.

Table B.14 Storage event object

Attribute/method Description

key The key of the item that was modified

oldValue The previous value of the modified item

https://developer.mozilla.org/en-US/docs/DOM/File
https://developer.mozilla.org/en-US/docs/DOM/File
https://developer.mozilla.org/en-US/docs/DOM/Blob
https://developer.mozilla.org/en-US/docs/DOM/Blob

324 APPENDIX B HTML5 API reference

The methods in table B.15 apply to localStorage, sessionStorage, and to cookies cre-

ated using the document.cookie API. It’s available on the window.navigator object.

B.1.7 Media Element API

The Media Element API, shown in table B.16, is implemented by both the <audio>

and <video> elements.

newValue The new value of the modified item

url The address of the document that contains the item

storageArea The storage object in which the change was made

Table B.15 Another storage method

Attribute/method Description

yieldForStorageUpdates() Allows scripts to access storage areas, even if other scripts are

currently blocking those areas.

Table B.16 Media Element API

Attribute/method Description

autoplay Corresponding DOM attribute to the autoplay content attribute.

buffered Returns a TimeRanges object (an array of start and end times) that

represents the ranges of the media resource that the browser

has buffered.

canPlayType(type) Accepts a MIME type, for example, video/webm, and returns a value

indicating whether or not the browser thinks it will be able to play media

of that type. The possible return values, in decreasing order of certainty,

are 'probably', 'maybe', and an empty string.

controller The MediaController object associated with the element’s

mediagroup.

controls Corresponding DOM attribute to the controls content attribute.

crossOrigin Reflects the value of the crossorigin content attribute. This setting

is for Cross Origin Resource Sharing (CORS). The value can be either

anonymous or use-credentials, depending on whether the omit

credentials flag should be set or unset in the CORS headers.

currentSrc The address of the currently playing media.

currentTime The offset, in seconds, from the start of the media to the point

currently playing.

Table B.14 Storage event object (continued)

Attribute/method Description

325HTML5 APIs

defaultMuted Corresponding DOM attribute to the muted content attribute.

defaultPlaybackRate The default playback rate of the media; if this differs from the

playbackRate, then the user is using fast forward or slow motion.

duration The playing time, in seconds, of the media (if available).

ended Boolean attribute that returns true if the media has reached the end

of playback.

error If any error has occurred, this attribute will be set to a MediaError
object, which can be examined for the details.

load() Resets the media element, clearing any currently playing media and

rerunning the media-selection algorithm as if the page had just

been loaded.

loop Corresponding DOM attribute to the loop content attribute.

mediaGroup Corresponding DOM attribute to the mediagroup content attribute.

Allows the grouping of multiple media elements for synchronized playback.

muted Boolean value indicating whether or not the current media is muted.

networkState The state of any interaction between the media element and the

network. Returns an integer value from 0 to 3, which corresponds

to the constants NETWORK_EMPTY, NETWORK_IDLE,

NETWORK_LOADING, and NETWORK_NO_SOURCE, respectively.

pause() Sets the paused attribute to true, loading the media resource

if necessary.

paused Boolean value indicating whether or not the media is paused.

play() Sets the paused attribute to false, loading the media and beginning

playback if necessary. If the playback had ended, will restart it from

the beginning.

playbackRate The current effective playback rate; 1.0 is normal speed.

played Returns a TimeRanges object (an array of start and end times) that

represents the ranges of the media resource that the browser has played.

preload Corresponds to the value of the preload content attribute; can have

the value none, metadata, or auto.

readyState The readiness of the element to play media. Returns an integer

value from 0 to 4, which corresponds to the constants HAVE_NOTHING,

HAVE_METADATA, HAVE_CURRENT_DATA, HAVE_FUTURE_DATA,

and HAVE_ENOUGH_DATA, respectively.

seekable Returns a TimeRanges object (an array of start and end times) that

represents the ranges of the media resource that the browser is able to

seek to (if any).

Table B.16 Media Element API (continued)

Attribute/method Description

326 APPENDIX B HTML5 API reference

B.2 Other APIs and specifications

In this section, we cover the Geolocation API and the IndexedDB specification.

B.2.1 Geolocation API

The Geolocation API methods are defined on the window.navigator.geolocation

object. The options argument in the two position-retrieval API methods in table B.17

is a Position Options object and can have any of the attributes defined in table B.18.

seeking Boolean value indicating whether or not the browser is seeking (i.e., load-

ing new data) because the playback position has been skipped forward.

src Corresponds to the value of the src content attribute.

startDate If the media has an embedded explicit time (for example, timestamped

CCTV footage), this attribute will return the start date. This attribute was

previously called startOffsetTime.

volume Returns the current playback volume as a value between 0.0 and 1.0,

inclusive.

Table B.17 Geolocation API

Attribute/method Description

getCurrentPosition(successCallback,
[errorCallback], [options])

Gets the current position of the device, invoking

the relevant success callback function when it has

been located. If a problem is encountered, the

error callback function will be called.

watchPosition(successCallback,
[errorCallback], [options])

Monitors the position of the device and invokes

the relevant success callback provided as the loca-

tion of the device is updated or the error callback if

there’s a problem. Calling this function returns a

watch ID, which can be passed to clearWatch
to cancel a watch.

clearWatch(watchId) Clears an existing geolocation watch.

Table B.18 Position Options object

Attribute/method Description

enableHighAccuracy Informs the browser that the application would like to receive the maxi-

mum possible results. The browser can use this to determine whether it

should use a more accurate sensor such as a Global Positioning System

(GPS) sensor.

timeout The maximum length of time (in milliseconds) allowed to pass before the

relevant callback function is invoked.

Table B.16 Media Element API (continued)

Attribute/method Description

https://developer.mozilla.org/en-US/docs/DOM/Blob
https://developer.mozilla.org/en-US/docs/DOM/Blob

327Other APIs and specifications

When one of the Geolocation API methods invokes a success callback function, it

passes a Position object to that function; see table B.19.

coords, an attribute of the position object, lists the device’s coordinates, the esti-

mated accuracy of those coordinates, the device’s direction of travel, and its speed.

B.2.2 IndexedDB specification

IndexedDB is a very large specification, approximately 105 printed pages, so there’s not

room in this appendix to discuss every single attribute, method, and the like. Instead,

this section lists only the most important components used in this book. These compo-

nents have been grouped under their respective IndexedDB interfaces, and presented

in a table format. Summaries for each component have been prepared by Joe Lennon

and Greg Wanish and are derived from IndexedDB content (http://mng.bz/1M6o) by

maximumAge Typically, a device will store position information for a period of time to

avoid wasting battery by having the position-detection hardware running

constantly. If you’re willing to accept slightly out-of-date position data, you

can specify an acceptable maximum age in milliseconds in this parameter.

If the value is 0 or omitted, the browser must fetch a new position, even if

a cached position is available.

Table B.19 Position object

Attribute/method Description

coords A Coordinates object including the geographic coordinates of the user’s

location and the estimated accuracy. Further details are shown in table B.20.

timestamp The time when the user’s position was acquired.

Table B.20 Coordinates object

Attribute/method Description

latitude Geographic latitude coordinate, in degrees

longitude Geographic longitude coordinate, in degrees

altitude The height, in meters, above (approximately) sea level

accuracy The accuracy of the latitude and longitude values, in meters

altitudeAccuracy The accuracy of the altitude value, in meters

heading The direction the device is traveling in, specified in degrees

speed The device’s current velocity in meters per second

Table B.18 Position Options object (continued)

Attribute/method Description

http://mng.bz/1M6o

328 APPENDIX B HTML5 API reference

Mozilla contributors at the Mozilla Developer Network (MDN) and used under Creative

Commons CC-BY-SA (http://creativecommons.org/licenses/by-sa/2.5/). These tables of

IndexedDB interfaces are licensed under Creative Commons CC-BY-SA (http://creative

commons.org/licenses/by-sa/2.5/) by Joe Lennon and Greg Wanish. See http://mng.bz/

1M6o for a more complete explanation of the IndexedDB specification.

 The object window.indexedDB implements the IDBFactory interface and enables

applications to create, access, and delete an indexed database. Table B.21 lists the

methods and attributes for the asynchronous version of the IDBFactory interface.

The asynchronous version works with or without web workers; no browser at this time

supports the synchronous version.

Table B.22 lists the attributes and methods of the IDBCursor object. The cursor iter-

ates over object stores and indexes within an indexed database.

Table B.21 IDBFactory interface

Attribute/method Description

open(name, [version]) Requests a connection to a database with given name and version
number. If no database with name exists, create a database with given

name and version number.

deleteDatabase(name) Requests deletion of a database with given name.

cmp(first, second) Compares two keys to determine equality and ordering for IndexedDB

operations, such as ordering. Returns a -1, if first key is less than sec-

ond key; 0, if first key is equal to second key; 1, if first key is greater

than second key.

Table B.22 IDBCursor interface

Attribute/method Description

source On getting, returns the IDBOjectStore or IDBIndex that the cursor is

iterating over.

direction On getting, returns the cursor’s current direction of traversal.

key On getting, returns the key for the record at the cursor’s position. If the cursor

is outside its range, this is undefined.

primaryKey On getting, returns the cursor’s current effective key. If the cursor is currently

being iterated or has iterated outside its range, returns undefined.

update(value) Returns an IDBRequest object. In a separate thread, uses value to update

the value at the current position of the cursor in the object store. If the cursor

points to a record that has just been deleted, a new record is created with the

given value.

continue(key) Continues along the cursor’s current direction of movement, and finds the next

item with a key matching the optional key parameter. If no key is specified,

goes to the immediate next position, based on the cursor’s current direction

of movement.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://mng.bz/1M6o
http://mng.bz/1M6o
http://creativecommons.org/licenses/by-sa/2.5/

329Other APIs and specifications

Table B.23 lists the methods and attributes of the IDBDatabase object. The IDBData-

base serves primarily as a container for indexes and object stores. The IDBDatabase

object is the only way to get a transaction on the database.

Table B.24 defines the interface for the IDBEnvironment object; it has only a single

attribute, indexedDB. The IDBEnvironment provides access to a client-side database.

Table B.25 lists the IBDIndex object method, openCursor. This method is useful for

filtering through an index. The IBDIndex provides methods to access an index of

a database.

delete() Returns an IDBRequest object. In a separate thread, deletes the record at

the cursor’s position without moving the cursor. Afterward, the cursor’s value is

set to null.

Table B.23 IDBDatabase interface

Attribute/method Description

createObjectStore(name,
[parameters])

Creates and returns a new object store or index with a given name.

parameters is an optional object with the following properties:

keyPath Specifies a field in the object as a key. Each

object must have a unique key.

autoIncrement If true, the object store creates keys auto-

matically via a key generator.

setversion (deprecated) Updates the version of the database. Upon invocation, returns

immediately, and, on a separate thread, runs a versionchange
transaction on the connected database.

transaction(storeNames,
[mode])

Immediately returns an IDBTransaction object and, on a

separate thread, starts a transaction. The parameter

storeNames, an array of strings, identifies the object stores

and indexes that are to be accessible to the new transaction. The

mode parameter defines the new transaction’s type of access:

'readonly' or 'readwrite'. The default is 'readonly'.

version The version of the connected database. When a database is first

created, this attribute is the empty string.

Table B.24 IDBEnvironment interface

Attribute/method Description

indexedDB Provides a mechanism for applications to asynchronously access the capabili-

ties of indexed databases.

Table B.22 IDBCursor interface (continued)

Attribute/method Description

330 APPENDIX B HTML5 API reference

Table B.26 lists some of the methods for creating indexes and working with the object

store. These methods belong to the IDBObjectStore object.

Table B.27 lists the onupgradeneeded event handler used in the My Tasks application.

onupgradeneeded is an event in the IDBOpenDBRequest interface that provides access

to results of requests to open a database using event handler attributes.

Table B.25 IDBIndex interface

Attribute/method Description

openCursor([range],
[direction])

Immediately returns an IDBRequest object, then, on a separate

thread, creates a cursor over the specified key range. The optional

parameter range specifies the key range of the cursor. The other

optional parameter, direction, specifies the cursor’s direction of

movement through the index.

Table B.26 IDBObjectStore interface

Attribute/method Description

createIndex(name,
keypath, [parameters])

Creates and returns a new IDBIndex object with given name and

keypath. This method can only be called from a

VersionChange transaction mode callback. The optional

parameters object has the following properties:

■ unique If true, the index won’t allow duplicate values for a single key.

■ multiEntry If true, when the keypath resolves to an Array, the index will add

an entry in the index for each array element. If false, the index will

add one single entry containing the Array.

index(name) Returns the name index in the object store.

openCursor([range],
[direction])

Immediately returns an IDBRequest object, then, on a separate

thread, creates a cursor over the records in the object store. The

range parameter specifies the key range of the cursor. If the

range is not specified, it defaults to all records in the object

store. The direction parameter defines the cursor’s direction

of movement.

put(value, [key]) Immediately returns an IDBRequest object, then, on a separate

thread, creates a clone of the value and stores it in the object store.

The value parameter defines the value to be stored. The parame-

ter key identifies the record. If not defined, it defaults to null.

Table B.27 IDBOpenDBRequest interface

Attribute/method Description

onupgradeneeded The event handler attribute for the upgrade needed event. This event handler

is executed when a database’s version number has increased.

331File System API

Table B.28 lists the onsuccess event handler used in the My Tasks application to

access the results of an asynchronous request. onsuccess is an event in the IDB-

Request interface that provides access to results of asynchronous requests to databases

and database objects using event handler attributes. Reading and writing operations

on a database are executed with a request.

Table B.29 shows the method of the IDBKeyRange object used to search for keys within

the index created for the My Tasks database. The IDBKeyRange interface defines a

range of keys.

B.3 File System API

The File System API is massive; it will change how people think about managing web

application data. In this section, we cover directory-based APIs within the File System

API, as well as Blob data APIs. The following tables will give you some references and

shortcuts for better managing your file data.

 Table B.30 lists attributes associated with a File object.

Table B.31 lists attributes and methods associated with the FileList object. A File-

List object is returned by the files property of the HTML <input> element.

Table B.28 IDBRequest interface

Attribute/method Description

onsuccess The event handler attribute for the success event.

Table B.29 IDBKeyRange interface

Attribute/method Description

bound(lower, upper,
[lowerOpen],
[upperOpen])

Creates and returns a key range with upper and lower bounds. If

optional parameter lowerOpen is false (the default value), then the

range includes the lower bound of the key range. If optional parameter

upperOpen is false (the default value), then the range includes the

upper bound value of the key range.

Table B.30 File API

Attribute/method Description

name The name of the file

size The size of the file in bytes

type The MIME type of the file

332 APPENDIX B HTML5 API reference

Table B.32 lists attributes and methods associated with the FileReader object. A File-

Reader object lets web applications asynchronously read the contents of files (or raw

data buffers) stored on the user’s computer, using File or Blob objects to specify the

file or data to read.

Table B.33 lists events associated with the FileReader object.

Table B.31 FileList API

Attribute/method Description

length Number of files in the list.

item(index) Gets the file at the given index (zero-based).

Table B.32 FileReader API

Attribute/method Description

abort() Aborts reading the file

readAsArrayBuffer(blob) Reads the contents of the blob (which is either a File or a

Blob object) into an array buffer.

readAsDataURL(blob) Reads the contents of a Blob or File object and returns a

data: URL to it.

readAsText(blob,[encoding]) Reads the contents of a Blob or File object into a text

string if the optional encoding parameter is specified (e.g.,

'ISO-8859-1' or 'UTF-8'); then the string will be

encoded using that character set.

error If an error occurs, it will be loaded into this property.

readyState The state of the file read operation (0 = EMPTY, 1 = LOADING,

2 = DONE).

result This will be populated with the file’s contents when a read

operation has been completed. The format of the result will

depend on the method used to read the file.

Table B.33 FileReader events

Event name Description

abort Fires when the read operation is aborted.

error Fires when an error occurs while reading the file.

load Fires when the read operation has successfully completed.

loadend Fires after onload or onerror, regardless of whether the operation

was successful.

333File System API

Table B.34 lists methods associated with the FileWriter object. A FileWriter object

can perform multiple write actions, rather than just saving a single Blob.

Table B.35 lists the methods associated with the FileSaver object which has methods

to write a Blob object to a file.

Table B.36 lists the events associated with the FileSaver object which has events to

monitor the progress of writing a Blob to a file.

Table B.37 lists the methods associated with the FileEntry object. A FileEntry object

has methods to write and inspect the state of a file.

loadstart Fires when the read operation is about to start.

progress Fires periodically during the read operation.

Table B.34 FileWriter API

Attribute/method Description

seek(offset) Sets a specific file location at which the next write will occur.

truncate(size) Alters the length of the file to the size passed in bytes.

write(data) Writes the input data to a Blob object.

Table B.35 FileSaver API

Constructor/attribute/method Description

FileSaver(data) Creates a FileSaver object with Blob data.

abort() Terminates file saving.

Table B.36 FileSaver events

Event name Description

writestart Fires when starting a writing event.

progress Fires repeatedly while file is being written.

write Fires when a file is being written to.

abort Fires when file writing is canceled.

error Fires in response to an error or an abort.

writeend Fires when writing to a file has ended.

Table B.33 FileReader events (continued)

Event name Description

334 APPENDIX B HTML5 API reference

B.3.1 Directory-based APIs within the File System API

The File System API contains APIs to read directory entries in a directory. It also con-

tains APIs to create, read, look up, and recursively remove files in a directory. Direc-

tory entries are objects that describe either a file or subdirectory. A directory entry

contains attributes defining the entry’s status as a file or subdirectory, the pathname

to the entry, and the filesystem containing the entry.

 Table B.38 lists the methods for the directory entry object. This object represents a

directory entry in a filesystem. It includes methods for creating, reading, looking up,

and recursively removing files and subdirectories in a directory.

Table B.39 lists the only method for the DirectoryReader object.

Table B.37 FileEntry API

Constructor/attribute/method Description

createWriter(success, error) Creates a new FileWriter associated with the file that

FileEntry represents. If successful, calls function

success; otherwise calls function error.

file(success, error) Returns a file that represents the current state of the file

that the FileEntry represents. If successful, calls func-

tion success; otherwise calls function error.

Table B.38 DirectoryEntry API

Constructor/attribute/method Description

createReader() Creates a new DirectoryReader object to read

the directory.

getDirectory(path,[options],
[success], [error])

Creates or looks up a directory depending on set options.

Successful creation or location is handled by the success
callback; any errors will cause the error callback to

be executed.

getFile(path,
[options],[success],
[error])

Creates or looks up a file depending on set options. Success-

ful creation or location is handled by the success callback;

any errors will cause the error callback to be executed.

removeRecursively(success,
[error])

Deletes a directory and all contents; may only partially

delete a directory if an error occurs. Successful creation or

location is handled by the success callback; any errors

will cause the error callback to be executed.

Table B.39 DirectoryReader API

Attribute/method Description

readEntries(success,
error)

Allows you to read the next block of entries from the current directory,

with a successful read being handled by the success callback and

errors being handled by the error callback.

335File System API

B.3.2 Blob data APIs

A Blob is an object of immutable data. Blobs are usually used to store the contents of a

file. Part of the File API is inherited from the Blob API. Table B.40 lists the methods

and attributes of a Blob.

Table B.41 lists the methods for the BlobBuilder object. The BlobBuilder provides a

way to construct Blob objects by calling one or more append methods on the Blob-

Builder object. This API has been deprecated.

Table B.40 Blob interface

Constructor/attribute/method Description

blob([array], [attributes]) Creates a Blob object without BlobBuilder. The array can

be any number of ArrayBuffer, ArrayBufferView

(typed array), Blob, or DOMString objects, in any order.

attributes is an object that can specify the media type

and line endings in the type and ending properties,

respectively.

size Size in bytes of Blob’s data; read only.

type MIME type of the Blob’s data.

slice([start],[end],[type] Returns a specific chunk of Blob data, from offset start to

offset end with MIME type type.

Table B.41 BlobBuilder API

Attribute/method Description

append(ArrayBuffer) Appends the ArrayBuffer to the Blob.

append(Blob) Appends the Blob parameter to the Blob.

append(data, [endings]) Appends the string data to the Blob. The endings parameter

specifies how strings containing \n are to be written out. This can

be 'transparent' (endings unchanged) or 'native' (endings

changed to match host system convention).

getBlob([contentType]) Returns the Blob object that’s the result of all the append
operations. If specified, the content type will be set on the

returned Blob. This operation will also empty the BlobBuilder
of all data.

getFile(name,
[contentType])

Returns a file object with an optional content type.

336

appendix C
Installing PHP

and MySQL

To make the SSE Chat application from chapter 4 work, you’ll need to set up a web

server with PHP and MySQL. This combination is available free from various online

providers, but setting up your own local install will allow you to experiment more

freely. In this appendix we’ll walk you through setting up PHP and then MySQL on

Windows 7 and Mac OS X Mountain Lion.

C.1 Installing PHP on Windows 7

In this section you’re going to download and install PHP and get it working with

Windows’s built-in web server component, Internet Information Services (IIS).

C.1.1 Configuring Windows 7 IIS

IIS is not installed by default in Windows 7 but can be added through the Control

Panel option Turn Windows Features On and Off. Follow three steps to install IIS:

1 Open Control Panel and use the search feature to locate the Turn Windows

Features On and Off option. Double-click it, and you’ll see a dialog box like

the one shown in figure C.1.

In figure C.1 the functionality is divided into a tree of options. A check

mark shows that the feature and all its subfeatures are installed. A blue

square indicates that the feature, but only some of the subfeatures, are

installed. Selecting a feature with subfeatures will select the default set of

subfeatures; this isn’t necessarily all of the subfeatures. In the figure you can

see that Application Development Features is selected, but only six of the

seven subfeatures are selected.

337Installing PHP on Windows 7

2 Ensure that the options for IIS, World Wide Web Services, and, under the Appli-

cation Development Features section, CGI are all selected. Selecting IIS will

automatically select World Wide Web Services but not the CGI feature. Make

sure you expand the tree and select the CGI feature explicitly.

3 After you make all your changes, click OK. There will be a short delay while the

new features are installed.

C.1.2 Downloading PHP

PHP installers for Windows are available from http://windows.php.net/download/;

look for the links that say “Installer.” To follow along with us, use the latest 5.3 version

(5.3.16 at the time of writing, see figure C.2), which has an Installer option. The

installer will do a lot of automatic setup for you, so it’s the better option even if it’s not

the most recent version on the page.

 One other feature you should notice on the download page is that the Windows

binaries are available in Thread Safe and Non Thread Safe varieties. The difference is

only relevant if you want to integrate PHP with Apache; for installing PHP with IIS, you

want the Non Thread Safe version, so download that now.

 After clicking the link, you should have a file called php-5.3.16-nts-Win32-VC9-

x86.msi (or a similar name with a larger version number) to use in the next step.

Figure C.1 Adding the IIS

components to Windows 7

http://windows.php.net/download/

338 APPENDIX C Installing PHP and MySQL

C.1.3 Installing PHP

Now that you have the installation files downloaded you’re ready to install PHP by fol-

lowing these steps:

1 The MSI file you downloaded in C.1.2 will do most of the work for you. There

are only two steps, which we’ll walk you through, where you have to make deci-

sions. Double-click the file to start, and accept the license agreement and the

default file location.

2 For IIS configuration, select the option IIS FastCGI, which appears in the first

decision screen, as shown in figure C.3. Note that this is why we had you take

special care to select the CGI option earlier.

Figure C.2 The download

page at php.net; use the

latest 5.3 version to follow

along as you read.

Figure C.3

Selecting the web

server configuration

in the PHP setup

339Installing MySQL on Windows 7

3 When you see the next decision screen (figure C.4), accepting the defaults

should be fine, but just in case, you want both PHP and Extensions selected.

Continue to the end of the installer, and you’ll have a working PHP installation. As a

final step, let’s check that everything is working.

C.1.4 Confirm PHP is installed

IIS by default will serve files from the directory C:\Inetpub\WWWRoot\.

1 Create a file in that directory called index.php. Add the following code to it:

<?php phpinfo(); ?>

2 Load the URL http://localhost/index.php in your web browser. You should see

a page like the one shown in figure C.5.

When it comes time to run chapter 4’s SSE Chat application, you can make this work

in a similar way; copy the entire working folder into C:\Inetpub\WWWRoot\, then

browse to http://localhost/sse-chat/index.php (substitute sse-chat for whatever name

you gave your working directory). Now that you have PHP installed, it’s time to move

on to setting up MySQL.

C.2 Installing MySQL on Windows 7

MySQL also has a convenient MSI-based installation process, which will take care of

everything for you. In this section you’ll walk through downloading and installing the

database and client tools and then creating a database for use with the sample applica-

tion in the book.

Figure C.4 Select

the PHP components

to install

http://localhost/index.php
http://localhost/sse-chat/index.php

340 APPENDIX C Installing PHP and MySQL

C.2.1 Downloading MySQL

MySQL can be downloaded from http://dev.mysql.com/downloads/. The Download

button is hard to miss because it’s prominently displayed in the middle of the page, as

you can see from figure C.6.

Figure C.5 PHP is successfully installed.

Figure C.6 The Download button is very prominent on the MySQL website.

http://dev.mysql.com/downloads/

341Installing MySQL on Windows 7

1 Click the button to download.

2 On the next page, you’ll be presented with an option to create an account

(figure C.7). You don’t have to do this, although you can if you want to. To

start the download, just click the link at the bottom that says, “No thanks, just start

my download!”

C.2.2 Installing MySQL

In this section, you’ll install the MySQL server:

1 You should now have an MSI file called mysql-installer-community-5.5.27.3.msi,

except you’ll have a more recent version number; double-click it to start.

2 Although you should be able to accept the defaults at every step to get a work-

ing installation, the next few steps highlight a few of the screens involved to

help you stay on track. When you get to the Setup Type screen, shown in fig-

ure C.8, make sure the option Developer Default is selected.

Selecting the Developer Default option will install all the necessary tools to run and

manage a local database instance.

3 When you get to the Configuration page, shown in figure C.9, you don’t have to

change the defaults, but you should consider whether you really want your

MySQL Server available to anyone on your local network. If you want only local

connections allowed, deselect the option Enable TCP/IP Networking. If you

Figure C.7 Click the “No thanks”

link at the bottom of the page to

download without registering.

342 APPENDIX C Installing PHP and MySQL

Figure C.8 Choosing the MySQL setup type

Figure C.9 The MySQL installer Configuration page

343Installing MySQL on Windows 7

spend a lot of time connected to public Wi-Fi networks, you should definitely

deselect this option.

Figure C.10 shows the next key configuration step, setting the root password.

Although it’s important to set a strong password, it’s also important to set a memora-

ble one. If you forget this password, you won’t be able to access the database server. If

you deselected the option to allow network access in the previous screen, then the

password strength is less of an issue. On this screen you can also create other user

accounts and assign them to various administrative roles within the database server.

This isn’t necessary to get anything in this book working but shouldn’t break anything

if you’d like to add some.

4 Enter a password, and click Next until the installer has finished.

5 At the end of the process, the installer will ask if you want to launch MySQL

Workbench now; click Yes before proceeding to the next section. This is a tool

for managing databases and running scripts; in the next section you’ll use it to

create a database you can use for the SSE Chat application.

C.2.3 Creating a database and running scripts

Having a database server available is only half the battle; you also need to create a

database on that server for your app to use. In this section you’ll create a database and

Figure C.10 Setting the root password

344 APPENDIX C Installing PHP and MySQL

add the required structures for the chapter 4 SSE Chat app by running the chat.sql

script provided in the code download for that chapter. Before you start, make sure you

can see the MySQL Workbench welcome screen shown in figure C.11.

 The first task is to connect to your new database server. Double-click the local

instance in the leftmost box on the Welcome screen, under the heading Open Con-

nection to Start Querying. You’ll then be asked to enter your root password, as shown

in figure C.12.

Figure C.11 The home page of MySQL Workbench

Figure C.12 The enter

root password dialog box

345Installing MySQL on Windows 7

Type in the password you set earlier and click OK. You’ll be taken to the SQL Editor

screen. In the left pane you’ll see a list of databases (MySQL Workbench calls them

Schemas), and on the right is a text editor to use to enter queries.

 The second task is to create a database. On the toolbar you’ll see an icon of a yel-

low cylindrical object with a plus sign in front of it; it’s the third icon from the left.

1 Click that third icon, and you should see the create database dialog box shown

on the right side of figure C.13.

2 Enter a suitable name like ssechat. Click the Apply button toward the bottom of

the screen. Confirm that the script is being run, as shown in figure C.14, which

will create the database for you.

3 Open the chat.sql file from the chapter 4 code download; the File menu has all

the usual options for this sort of thing.

4 Run the script on the database you’ve just created by selecting the Execute (All

or Selection) option from the Query menu. This will set up the tables required

for the app.

Figure C.13 Creating a database

Figure C.14 The chat.sql file open in the MySQL workbench

346 APPENDIX C Installing PHP and MySQL

Note that if you see an error 1046 like the one shown in figure C.15, this is because the

database isn’t selected.

 If you get that error, double-click the database name in the left pane and run the

script again.

 You now have PHP and MySQL set up and working on your Windows 7 machine.

C.3 Installing PHP and MySQL on Mac OS X Mountain Lion

All recent versions of Mac OS X come equipped with Apache and PHP. By default,

Apache is not running, nor is it configured to load PHP when it runs. To get every-

thing running, you’ll need to follow along with a few steps.

C.3.1 Configuring Apache and PHP

To get PHP running on your computer you must first edit a couple of Apache configura-

tion files. By default, these files are hidden from the Finder, so the easiest way to access

them is through the Terminal application. Don’t worry if you’re not familiar with the

Terminal and command line in OS X; just follow along and you should be okay.

NOTE For brevity, when we display the command line we’ll simply use $ to
represent the prompt. Any bold text is text that you’ll type in, and any non-
bold text is what will appear in the Terminal.

USING THE TERMINAL

The Terminal app can be found in the Applications/Utilities folder on your system.

 Open the Terminal and you’ll be presented with a greeting message followed by a

prompt that looks similar to this:

MacBook:~ scott$

The first part of the prompt, MacBook, is the hostname of your computer; this will most

likely be different on your computer. (The hostname can be set to whatever you’d like

in the Computer Name: text field of the Sharing System Preference pane.) After the

colon (:) is your current path. The path represents what folder you are currently in.

Most likely, when you start the terminal you’re in the Home directory (/Users/YourUser-

name); Terminal abbreviates a user’s Home directory with the ~ symbol. After that the

Figure C.15 If you see an error 1046, it’s because you’ve not selected a database for running

the query.

347Installing PHP and MySQL on Mac OS X Mountain Lion

prompt shows you your username (which won’t be scott unless that’s actually your user-

name) followed by the $ prompt and a cursor awaiting your input.

 Our first Terminal command will take you to the location where the Apache con-

figuration files are stored:

$ cd /etc/apache2/

This will take you to the apache2 folder where the configuration files are kept. (Note

that after you type this command the ~ in the prompt changes to apache2.) It does

this with the cd (change directory) command, which tells the terminal to go to a spe-

cific directory.

 Next, let’s look at the files in this directory:

$ ls –FG

You should get a response showing the following:

extra/ magic original/ users/
httpd.conf mime.types other/

The ls (list directory) command lists the contents of a directory. The -FG part is flags

that add features to the basic ls command. In this case the -F adds symbols to special

files (in this case the trailing / for subdirectories) and the -G adds color to special files.

These two are slightly redundant, but they make the listing prettier.

 At this point, your first step is to edit the httpd.conf file. This is the master Apache

configuration file.

EDITING APACHE CONFIGURATION FILES

Editing the httpd.conf file involves a few tricks. By default, only a superuser (aka

root) can edit this file; for this reason most graphical text editors (including any

downloaded through the App Store) will refuse to save any changes to this file (see fig-

ures C.16 and C.17)

NOTE Some graphical text editors will allow you to unlock and edit files like
httpd.conf, but such capabilities aren’t allowed in applications found in the
App Store. For example, BBEdit, which is available in the App Store, will allow
you to edit httpd.conf, but if you purchase the App Store version you’ll need to
download an additional file from the BareBones website to enable this feature.

Figure C.16 When you

try to edit httpd.conf in

most text editors, you’ll

first get a warning saying

the file is locked.

348 APPENDIX C Installing PHP and MySQL

So, if there are many roadblocks to editing the httpd.conf file, how do you go about

it? It’s not too difficult from the Terminal app using sudo along with a command-

line text editor.

NOTE The sudo (switch user and do) command is available to any user on
Mac OS X with Admin rights. Most users have Admin rights to their Mac. But
if a business, school, parent, or untrusting spouse provided your computer for
you, you may not have Admin rights. If this is the case, you can’t continue on
your own; rather you should bug the person who provided you your computer
incessantly until they either give you Admin rights to your system or set all of
this up for you.

To begin, though, we’ll test out sudo and create a backup copy of httpd.conf just in

case, all at the same time with the following:

$ sudo cp httpd.conf httpd.conf.orig
Password:

After typing this command you’ll be prompted to enter your system password to

complete the command. Also, if this is the first time you’ve used sudo, you’ll be

given a warning about the dangers of using sudo inappropriately. Upon successfully

typing in your password, you can run the ls command, and you should see a new

httpd.conf.orig file listed. If not, something went wrong (check the previous note

about being Admin).

 Assuming you were able to create a copy of httpd.conf, you should be ready to go,

assured that even if you do something horribly wrong, you can recover using your

backup file. So begin the editing with

$ sudo nano httpd.conf

Now, because you recently ran the sudo command to create your backup, you may not

be prompted again for your password. sudo will remember you for short periods of

time between sudo commands, so you don’t need to enter your password every time

you run the command.

 This command will open the httpd.conf file in the nano text editor with superuser

permissions, allowing you to edit and save the file. As a result, nano will take over your

terminal screen, which should now look something like this:

Figure C.17 If you try to

unlock httpd.conf, in most

text editors you’ll get

another warning saying that

it can’t be unlocked here.

349Installing PHP and MySQL on Mac OS X Mountain Lion

#
This is the main Apache HTTP server configuration file. It contains the
configuration directives that give the server its instructions.
See <URL:http://httpd.apache.org/docs/2.2> for detailed information.
In particular, see
<URL:http://httpd.apache.org/docs/2.2/mod/directives.html>
for a discussion of each configuration directive.
#
Do NOT simply read the instructions in here without understanding
what they do. They're here only as hints or reminders. If you are unsure
consult the online docs. You have been warned.
#
Configuration and logfile names: If the filenames you specify for many
of the server's control files begin with "/" (or "drive:/" for Win32), the
server will use that explicit path. If the filenames do *not* begin
with "/", the value of ServerRoot is prepended -- so "log/foo_log"
with ServerRoot set to "/usr" will be interpreted by the
server as "/usr/log/foo_log".

 [Read 500 lines]

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos
^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text ^T To Spell

Now your primary goal in this file is to set up and enable PHP. To do this you need to

scroll down to the directive that loads the PHP module. By default this should be on

line 117. You can use the Ctrl+Shift+_ keyboard shortcut to invoke the Enter line

number, column number: command in nano and enter 117 to go directly to line 117.

Alternatively, just scroll down using the down-arrow key until you reach the part of the

file that looks like this:

LoadModule alias_module libexec/apache2/mod_alias.so
LoadModule rewrite_module libexec/apache2/mod_rewrite.so
#LoadModule perl_module libexec/apache2/mod_perl.so
#LoadModule php5_module libexec/apache2/libphp5.so
#LoadModule hfs_apple_module libexec/apache2/mod_hfs_apple.so

<IfModule !mpm_netware_module>

The line that reads #LoadModule php5_module libexec/apache2/libphp5.so is the

line you’re interested in. Once you’re there, place the cursor in front of the # at the

beginning of the line and delete it (with the Delete key). That’s it. Now hit Ctrl+X to

exit. Upon exiting you’ll be asked if you want to save the buffer (geek speak for “save

the file”). Press Y for yes, then Enter to accept httpd.conf as the name you want to save

it as. Finished!

NOTE nano is one of the command-line options for text editors available to
Mac OS X users. You could also choose to use vi (or vim) or emacs, both of
which are significantly more powerful then nano, but both also present a much
steeper learning curve, one that isn’t appropriate for this discussion. If you
already know and wish to use one of these other text editors, it’ll work just fine.

GNU nano 2.0.6 File: httpd.conf

[Read 500 lines]

^G
^X

^O
^J

^R
^W

^Y
^V

^K
^U

^C
^T

350 APPENDIX C Installing PHP and MySQL

Now, to make sure everything works right, start Apache (or restart it) with the follow-

ing command:

$ sudo apachectl graceful

NOTE Prior to Mountain Lion you could control Apache by selecting the
Web Sharing option in the Sharing System Preference pane. This, to much
criticism, was removed for Mountain Lion. Apple feels that if you really must
run a web server, you’d be better served by loading OS X Server ($19.99) from
the App Store.

If you inadvertently created any errors in your httpd.conf file, you may receive an

error here. If so, compare your httpd.conf file to your httpd.conf.orig backup and see

if there are any changes other than removing the # from the PHP LoadModule line.

 If you see nothing, you’re probably in good shape. Try opening http://localhost in

a web browser. If you get a web page that by default says “It Works!” you’re in good

shape; Apache is running.

SERVING WEB FILES FROM YOUR OWN SITES DIRECTORY

There’s one more configuration step for files so you can easily create and serve web

pages from a Sites folder in your Home folder. The first thing is to go to your Home

folder in the Finder (once you’re in the Finder, the Command+Shift+H keyboard

shortcut will take you directly to your Home folder) and create a new folder called

Sites. This is where you’ll create your web files.

NOTE The editing of the httpd-userdir.conf file isn’t necessary on OS X prior
to Mountain Lion.

Now upon restarting Apache (with the apachectl graceful command), Apache will

immediately recognize your folder, but if you try to access it through a web browser,

you’ll get an error. The reason for this is Apache has very restrictive default directory

settings as a security precaution. To override this for user directories you need to edit

the httpd-userdir.conf file. To open the file for editing, use this command:

$ sudo nano /etc/apache2/extra/httpd-userdir.conf

You may or may not be prompted for your password depending on when you last

used sudo.

 Once the httpd.userdir.conf file is open, scroll to the bottom and add the following:

<Directory "/Users/*/Sites/">
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 Allow from all
</Directory>

Exit nano as you did before saving the revised httpd.userdir.conf file.

 In short, this bit of code tells Apache that it has permission to look and serve con-

tent from any user’s Sites folder.

http://localhost

351Installing PHP and MySQL on Mac OS X Mountain Lion

To test everything and make sure it all works, type the following at the terminal prompt:

$ echo "<? phpinfo() ?>" > ~/Sites/test.php
$ sudo apachectl graceful

Then point your web browser to http://localhost/~user/test.php (where user is

replaced by your username). The resulting web page should look like figure C.18.

C.3.2 Installing MySQL on Mac OS X

The easiest way to get MySQL up and running on your Mac is as follows:

1 Go to the MySQL website and download the latest version of MySQL community

edition (http://www.mysql.com/downloads/mysql). If you’re running Moun-

tain Lion (which is a 64-bit OS), then the appropriate version to download is the

X86, 64-bit version of MySQL in DMG format. Once the disk image is down-

loaded, open it and right-click the MySQL installer package and select Open.

This will install MySQL into your /usr/local/ directory. For convenience, right-

click the MySQL.prefPane item on the disk image, and select Open. This will

install a preference pane, allowing you to control MySQL from the System Pref-

erences (see figure C.19).

2 Start MySQL (click the Start MySQL Server button in the Control Panel).

Figure C.18 If the PHP info page shows up, Apache is configured and running properly.

http://www.mysql.com/downloads/mysql
http://localhost/~user/test.php

352 APPENDIX C Installing PHP and MySQL

3 Set a root password for MySQL by issuing the following command at the termi-

nal prompt:

$ /usr/local/mysql/bin/mysqladmin –u root password “newpassword”

This will set the root password for MySQL to newpassword or whatever you put in the

quotes (remember it!).

 That completes the basic configuration of MySQL (easy!). Now you can invoke the

MySQL client from the command prompt using

$ /usr/local/mysql/bin/mysql –u root –p

and entering your password when prompted.

C.3.3 Getting MySQL and PHP to play nice together

There’s one frustrating issue with getting PHP and MySQL to play nice together in Mac

OS X: the location of mysql.sock. mysql.sock is a Unix socket file that allows bidirec-

tional communication between MySQL and any other local application. In the case of

our sample application, we want PHP and MySQL to talk to each other, but if you look

at the PHP info (using your test.php web page from before), you’ll see that PHP is

looking for mysql.sock in /var/mysql, whereas the actual mysql.sock file is by default

in /tmp/. What to do?

 There are four ways to fix this. Read through the options and decide which is the

sanest approach for you.

■ Create the /var/mysql directory (sudo mkdir /var/mysql) and create a sym-

bolic link from /tmp/mysql.sock to /var/mysql/mysql.sock (with: sudo ln -s

/tmp/mysql.sock /var/mysql/mysql.sock). This method is easiest but a bit

of a hack.

Figure C.19 The MySQL preference pane will allow you to start and stop MySQL as needed.

353Installing PHP and MySQL on Mac OS X Mountain Lion

■ Edit the /etc/php.ini file (it may not exist, in which case just sudo cp /etc/

php.ini.default /etc/php.ini) so that pdo_mysql.default_socket=/tmp/

mysql.sock (by default line 1065), mysql.default_socket = /tmp/mysql.sock

(by default line 1219), and mysqli.default_socket = /tmp/mysql.sock (by

default line 1278). This method is the easiest real way.

■ Edit (or create) /etc/my.cnf, adding the following lines: [mysqld] socket=/

var/mysql/mysql.sock [client] socket=/var/mysql/mysql.sock. This will

tell MySQL to create its socket where Mac OS X’s default PHP is looking for it.

Next, you also need to create the /var/mysql directory and sudo chown mysql

/var/mysql it, or MySQL won’t start because it won’t be able to create the

socket. (Various sample my.cnf files can be found in /usr/local/mysql/support-

files.) This method isn’t too bad, but it could cause issues with other MySQL cli-

ents that look for the socket in /tmp/mysql.sock.

■ Recompile php for your version of MySQL. This method, although a pain, isn’t a

terrible idea; it’s actually the best fix although clearly neither fast nor easy.

Pick the way that works for you and do it. When you’ve finished, your computer will be

ready to serve up MySQL-driven, PHP-based web apps—including the sample app in

chapter 4.

354

appendix D
Computer

networking primer

The client-server model is the foundation of the web: Your browser is the client,

servers sit out in the internet cloud, and computer networking is how they talk to

each other. JavaScript can only do so much by itself; most web applications are still

built around the communication back to the web server. The fundamentals of com-

puter networking—and terminology like headers, latency, throughput, and poll-

ing—are covered in most undergraduate computer science programs, but because

web development attracts people from a broad range of backgrounds, this appen-

dix assumes you’ve not been through a program like that. Here, we’ll introduce

you to the following concepts:

■ The basics of computer networking

■ The overhead of headers

■ Two important network performance metrics: latency and throughput

■ Polling versus event-driven communications

■ Server-side choices for event-driven web applications

■ The WebSocket protocol

Along the way, you’ll also briefly review the hacks used in HTML4 to avoid the par-

ticular performance trade-offs inherent in the fundamental web protocol, HTTP.

For starters, if you’re not sure what real-time web development even means, this appen-

dix will provide some context.

D.1 The basics of computer networking

Computer networks have both hardware and software components. Physically,

they’re wires, fiber optics, or radio waves, but in software they’re defined by what’s

355The overhead of headers

called a protocol. The physical wires transmit pure bits of data, zeros and ones; it’s the

protocols that give those bits wider meaning.

 To keep life simple, the software protocols are divided into layers. At the “bottom”

of the stack are things like Ethernet, which is a protocol for pushing bits along wires

by dividing them into packets. Above that sit protocols like the Internet Protocol (IP),

which can deal with routing messages across several Ethernet connections. On top of

this are protocols such as the Transmission Control Protocol (TCP), which deals with

keeping track of which messages have been sent, which have been received, when to

consider a message lost and repeat it, and what order they should all be in when they

arrive. It’s only once you get above TCP that you hit protocols like HTTP, which was

designed specifically for passing web pages around.

 When writing a web server it’s not necessary to consider how to communicate with

different types of network hardware. It doesn’t need different methods for sending

messages across Ethernet or Wi-Fi. All it needs to know is how to describe HTTP

requests to the TCP layer of the local network stack.

 Figure D.1 shows this arrangement in pictorial form.

 This arrangement allows communication to be conceptually simple. Applications

that want to talk HTTP only need to know about HTTP and not all the other layers. But

this simplicity doesn’t come without cost. Each layer needs to add some information

to what’s being transmitted—this information generally can be referred to as headers,

and you’ll learn more about them in the next section.

D.2 The overhead of headers

Figure D.2 focuses on exactly what’s going on at the interchange between the layers,

when data needs to be passed from an application over HTTP and down the network

HTTP

TCP

IP

Ethernet

Cable

Conceptual data flow

Web browser Web server

ServerYour computer

Actual data flow

HTTP

TCP

IP

Ethernet

Cable

Figure D.1 A network stack.

Conceptually, each layer

communicates directly with its

counterpart on another computer.

In reality, the data flow is down the

stack, across the physical wires,

and back up the other stack.

356 APPENDIX D Computer networking primer

stack. At each stage, a small amount of information is added to allow the receiving

layer to understand what the data is and what it’s for.

 The HTTP, TCP, and later IP layers each add a different type of header information.

The TCP and IP header information is binary data. In binary data each of the headers

can be represented by the minimum number of bits—if there are only four possible

values, then only 2 bits need to be used. HTTP headers are plain text, which makes

them easy to read but more verbose. The smallest possible theoretical header is a single-

character label, a colon, and a single-character value. In ASCII encoding this adds up

to 24 bits. Most labels and values are made up of several letters, and each HTTP

request has several headers attached, with the result that most HTTP requests attach

between 0.7 and 2 kilobytes of headers. This is one of the disadvantages of HTTP for

data communication. If a single chat message needs to be sent, and the message is

only 20 or 30 bytes, it needs to be sent with all this extra data.

 In network performance terms we talk about throughput (or bandwidth): the

amount of data that the server can send per second. If the server is limited to a

throughput of 10 kilobytes per second, then it can deliver around 10 HTTP responses

per second. If it only had to send the chat data, it would be able to send about 330

chat messages. From a slightly different point of view, an application based on thou-

sands of users receiving small, real-time updates will need 33 times as many servers if

you send that data over HTTP than if you’re just sending the chat data.

Application

1. The application has

some data it wants

to send via HTTP.

3. The combined header

and data become

the input data for the

next layer.

5. The new combined

header and data

become the data

for the next layer.

4. TCP splits the

data into equal size

chunks and adds

its own header to

each chunk.

2. HTTP takes the

data and adds

some headers.

Input data

Data

DataHeader

Header

Input data

HTTP layer

TCP layer

IP layer

Figure D.2 Each layer adds header information and passes the data down the stack.

357Polling vs. event-driven

 Throughput is only one measure of network performance. In the next section

you’ll consider the other key factor, latency.

D.3 Network performance metrics: latency and throughput

Throughput, the amount of raw data that can be transferred in a given time period, is

only one aspect of networking performance. The other key factor is latency: the time it

takes for a single bit of data to travel between two computers. Latency is important

when you expect to have a lot of requests, and those requests depend on one or more

of the previous requests completing.

 In the previous section you learned that all the extra headers used by HTTP impact

the throughput. You have every right to wonder, then, why bother with them. One rea-

son is to improve latency. All of those headers include information about caching.

This allows a browser to only download a resource, such as an image or a style sheet, a

single time and then reuse the cached version for every other page that uses it. For

any users who visit more than one page on your site, this means fewer network requests

and therefore lower latency.

 For transferring small and largely independent portions of data, all of these extra

headers are a waste. The data is unique; otherwise, there’s no point sending it, which

means you’ve nothing to gain from caching.

 That’s not the only problem with using HTTP for data transfer. What if the client

only wants to check to see if there’s new data available, a process known as polling?

Each poll will come with all the baggage of those HTTP headers. Polling can be ineffi-

cient to start with, which makes it a poor choice for real-time applications. The next

section will examine this issue in more detail.

D.4 Polling vs. event-driven

The phrase “real-time web” has become fashionable in recent years. Although it’s

based on a number of trends, the real-time web embodies a shift from the traditional

client polling approach in web applications to a more event-driven approach. Instead

of clients deciding when to ask the server if there’s new information, the server sends

new information to the client when it’s ready.

 Event-driven approaches are far more efficient than polling. This section will dem-

onstrate that point with a series of timeline diagrams. Figure D.3 illustrates an opti-

mum case for polling.

 Even with the optimum polling solution you’ll still have polls when there’s no data,

and for other polls data will be available for nearly the full length of time between

polls. And the optimum polling solution is hard to achieve. The average chat room

will have busy periods and quiet periods, and when those occur depends on the con-

fluence of schedules of people living thousands of miles apart. It’s more likely the

application will spend more time in the degenerate cases (see figure D.4).

358 APPENDIX D Computer networking primer

The solution is to switch from polling to event-driven communication, as illustrated in

figure D.5. Then the server, which knows when the information is available, is in

charge of when information is delivered.

 Event-driven communication is clearly more efficient because it exactly matches

the frequency of communication with the frequency of the availability of new data.

With no built-in support for event-driven messaging, web developers who wanted to

avoid the use of plug-ins have resorted to two HTML/JavaScript hacks to simulate it:

long polling and the forever frame.

Time

Server has

new data

Web browser

polls

Figure D.3 The optimum case for polling: new data is available regularly, and

the frequency of the new data being available is similar to the number of polls.

Time

Server has

new data

Web browser

polls

Time

Server has

new data

Web browser

polls

Figure D.4 The worst cases for polling: top—when new data is available far

more frequently than it’s polled for; bottom—when polling happens far more

frequently than there’s data available.

359Polling vs. event-driven

Long polling allows for an increased chance of instantaneous updates by being pur-

posefully slow in responding to a request. Instead of responding to a request immedi-

ately, the server holds the connection open and waits until there’s new data. As soon

as the browser receives the new data, another long poll is initiated.

 The forever frame is a way of loading a web page slowly. The web page is loaded into

a hidden iframe element. Instead of delivering all the content as quickly as possible,

the server sends a chunk at a time, as updates become available. In the main page, the

iframe is repeatedly scanned for new content.

 Long polling approximates event-driven communication, but each request still

requires a full set of HTTP headers. The forever frame approach requires the headers

to be sent only once, but it still requires a lot of messing around in client code to

check the contents of the frame to see if they’ve been updated.

 Server-sent events (SSE) work along the same lines as forever frames, except the

browser has a convenient API that’s similar to the cross-document and channel-

messaging APIs you’ve already seen.

Time

Server has

new data

Events are

sent

Time

Server has

new data

Events are

sent

Figure D.5 Having event-driven communication means data is sent exactly as

often and exactly when it becomes available. Data is received without any wasted

requests or delays.

360 APPENDIX D Computer networking primer

D.5 Server-side choices for event-driven web applications

The two new event-driven, client-server APIs in HTML5 are SSEs and WebSocket. Event-

driven, client-server approaches are ideal for applications that need to send small

amounts of data quickly to many clients; for example, stock-trading applications,

where a few milliseconds’ delay in updating can have measurable financial impact, or

network gaming where delays (or lag) can make the game unplayable.

 On a traditional web server, each connection is allocated a dedicated thread or

process (a flow of execution within a program), which suits the model where each

connection is data-intensive but short lived, such as when a web page and its linked

resources are being downloaded. Event-driven communication expects the connec-

tions to be long lived but with relatively little activity. When each thread is assigned a

connection, the maximum limit is soon reached and the server becomes unable to

respond to new requests.

 This can be a problem for traditional web servers like Apache, which allocate a

process or thread per connection. The number of processes or threads that can be

created is limited, even if, as is usually the case, all of those processes or threads spend

most of their time doing nothing. Servers such as Lighttpd and nginx share the pro-

cesses between the connections to allow them to handle a far larger number; these

servers have risen in popularity along with event-driven, real-time web applications.

D.6 Understanding the WebSocket protocol

The WebSocket protocol allows bare-bones networking between clients and servers

with little overhead—certainly far less overhead than the previously more common

approach of attempting to tunnel other protocols through HTTP. With WebSockets

it’s possible to package your data using the appropriate protocol, the eXtensible Mes-

saging and Presence Protocol (XMPP) for chat, for example, but benefit from the

strengths of HTTP, which, like MasterCard, is accepted nearly everywhere.

D.6.1 WebSocket protocol vs. WebSocket API

The specifications for WebSockets are split into two parts. The WebSocket protocol

describes what browser vendors and servers have to implement behind the scenes; it’s

the protocol used at the network layer to establish and maintain socket connections

and pass data through them. The WebSocket API describes the interface that needs to

be available in the DOM so that WebSockets can be used from JavaScript.

 The Internet Engineering Task Force (IETF) maintains the specification for the

WebSocket protocol. This is the same organization that manages the specifications for

HTTP, TCP, and IP.

WHATWG maintains the specification for the WebSocket API in concert with W3C,

the same as for the HTML5 specification itself.

361Understanding the WebSocket protocol

D.6.2 The WebSocket protocol

Like parts of the HTML5 specification, the WebSocket protocol spent many months

under heavy development, but unlike HTML5, the versions that the client and server

are using need to match for everything to work.

 The WebSocket protocol describes, in detail, the exact steps a client and server

take to establish a WebSocket connection, exchange messages, and ultimately close

the WebSocket. To make a node, or any web server, accept WebSocket connections,

you need to implement the WebSocket protocol. In this section you’ll get an overview

of how that protocol works. The following listing is a set of HTTP headers that the

browser will send to the server in order to initiate a WebSocket connection.

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat.example.com, chatplus.example.com
Sec-WebSocket-Version: 13

A typical server response is shown in the next listing.

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat.example.com

Listing D.1 The WebSocket handshake

Listing D.2 The server response

The format is intentionally modeled after HTTP requests; to
web servers, routers, proxies, and other web infrastructure
this request should look like a normal HTTP request.

These headers indicate to the server that you’re
expecting an upgrade from HTTP to WebSocket.

This header is a base64-encoded string (decoded, this one reads “the sample nonce”). The
decoded string must be 16 bytes long. It will be transformed by the server and returned to the
browser for security verification in listing D.2.

This tells the server where the script making the
WebSocket request originated, allowing cross-

domain requests to be blocked if necessary.

The list of subprotocols the browser understands;
the protocol the application will be using across
the Web Socket—these are application-specific

and the whole header is optional.

The WebSocket protocol version the web
browser is expecting; for hybi-17 the version is
13 because hybi-13 was the last version where a

noncompatible change was made.

The web
server

announces
that it has

accepted
the

upgrade
request.

The upgrade headers
are echoed back.

Response to the Sec-
WebSocket-Key header in
listing D.1. The string
258EAFA5-E914-47DA-95CA-
C5AB0DC85B11 is appended
to the value; it’s hashed
with SHA-1 and then
base64-encoded again and
placed in this field.

Of the subprotocols listed by the client,
this is the one the server understands.

362 APPENDIX D Computer networking primer

Once the handshake is complete, data exchange can begin. The messages in Web-

Sockets are sent in what are referred to as frames. Figure D.6 shows the structure of a

frame. Frames are a lightweight container for the data with minimal binary headers.

The overhead per message is only 6 bytes.

D.6.3 WebSocket browser support

Although the protocol is well-defined, let’s review further complications. The Web-

Socket protocol was only finalized in spring 2012. Before that, seven different versions

of it had seen some browser support. Table D.1 shows the different versions and the

browsers that support each of them.

 Table D.1 lists only the versions where noncompatible changes were made. But you

can see from the numbers in the table that there have been many versions of the spec-

ification, up to version 76 when the specification was still maintained by WHATWG

(hixie-76), which then became the initial version of the IETF-maintained specification.

Data

Mask

Data length

Mask flag

Op code

Header4 bits

A web socket frame

4 bits

1 bit

32 bits

Variable

7 bits

(or 23 bits

or 71 bits)

Currently this will always be 1000.

Always 1

If the length of the data can’t be

described in 7 bits, 23 or 71 bits

can be used.

The mask is a random 32-bit value

that’s XORed against the data.

It should be different on every

request to deter sniffing.

The application data

There are six opcodes defined

• Continuous frame

• Text frame

• Binary frame

• Close

• Ping

• Pong

Figure D.6 Diagram of a WebSocket frame—the non-data parts take up only 48 bits,

equivalent to six characters.

363Understanding the WebSocket protocol

It has since seen 17 further revisions before finally being released as RFC 6455. The cli-

ent passes the version it understands in the initial request (listing D.1). On the server

side you can decide whether or not to support the version the client understands.

Obviously, the more versions you choose to support, the more work you have to do on

the server.

Table D.1 WebSocket protocol versions and browser support

WebSocket

protocol version

hixie-75 4 5.0.0

hixie-76 / hybi-00 6 4

(disabled)

11

(disabled)

5.0.1

(and iOS5)

hybi-06 8/9

(add-on)

hybi-07 6

hybi-09 8/9

(add-on)

hybi-10 14 7 10 (DP1)

hybi-17 / RFC 6455 16 11 10 12.50 6.0, iOS6

364

appendix E
Setting up Node.js

This appendix is provided for readers who need to set up Node.js for the chapter 4

application. You might be wondering why we chose Node.js. There are several alter-

native web servers that are much better suited to WebSockets than the traditional

choices of Apache or IIS (IIS8 will have built-in WebSocket support). These servers

share connections between threads, taking advantage of the mostly idle nature of

event-driven connections. In chapter 4, you’ll be using Node.js for two reasons:

■ It uses JavaScript, which you’re already familiar with.

■ It has an easy-to-use library implementing the WebSocket protocol.

This appendix will walk you through installing and setting up Node.js for the chap-

ter 4 application. You’ll also learn how to build basic web applications with Node.js

and how to use the Node Package Manager (NPM). NPM lets you easily install mod-

ules to extend the functionality of Node. You’ll also create a simple application to

confirm that the modules are installed correctly.

E.1 Setting up Node.js to serve web content

Node.js is an event-driven web server based on the V8 JavaScript engine, which is

part of the Google Chrome browser. The basic process for installing Node is to

download the source code and compile it. For Linux and Unix users, this isn’t an

unfamiliar approach, but this may come as a bit of a shock to Windows users. For

Windows, a prebuilt binary is available from the installation page: https://

github.com/joyent/node/wiki/Installation.

 Even if you’re using the prebuilt binaries, the prerequisites mentioned on the

installation page are still required because they’re used in the installation of mod-

ules (which you’ll look at in E.2). Unfortunately, the installation page doesn’t do a

very good job of explicitly stating the requirements for each platform; table E.1

summarizes the prerequisites for all the major platforms.

https://github.com/joyent/node/wiki/Installation
https://github.com/joyent/node/wiki/Installation

365Setting up Node.js to serve web content

Once you’ve installed your prerequisites correctly you can get started. This appendix

will walk you through a few simple example Node applications, which will confirm

that your installation is correct and let you see how common web application scenar-

ios are handled in Node.

E.1.1 Create a Node Hello World application

In this section you’ll build, in two steps, the

traditional Hello World application shown in fig-

ure E.1. You’ll generate a page entirely dynami-

cally using JavaScript.

STEP 1: CREATE A NODE APPLICATION

The first listing is a simple Hello World applica-

tion for Node, as shown in figure E.1. Create a

file called app.js in your working directory and

place this code into it.

var http = require('http');

http.createServer(function(request, response) {
 response.writeHead(200);
 response.write("<!DOCTYPE html>");
 response.write("<html>");
 response.write("<head>");
 response.write("<title>Hello</title>");
 response.write("</head>");
 response.write("<body>");
 response.write("Hello World");
 response.write("</body>");
 response.write("</html>");
 response.end();
}).listen(8080);

STEP 2: RUN A NODE APPLICATION

After you’ve created your app.js file you should be able to start Node. Issue a com-

mand like the following from your shell or command prompt, making sure you’re in

Table E.1 Node.js prerequisites by platform

Platform Prerequisites

Linux GCC 4.x.x; GNU make 3.81 or newer; Python 2.6 or 2.7

Unix/BSD GCC 4.x.x; GNU make 3.81 or newer; Python 2.6 or 2.7; libexecinfo

Mac Xcode 4.5; GNU make 3.81 or newer; Python 2.6 or 2.7

Windows Visual Studio 2010 or Visual C++ 2010 Express; Python 2.6 or 2.7

Listing E.1 Node Hello World

Figure E.1 Node says “Hello World.”

Most functionality in Node is implemented through a
system of modules; here the built-in http module is loaded.

The http module has a create
server method, which is passed
a handler function that will be
called when requests are made.

The response itself is a simple
web page; each line is explicitly
written into the response.

The end()
method

indicates
that the

content is
complete. After the server is created, it’s set to listen on

port 8080; any requests to http://localhost:8080
will now be passed to the handler function.

http://localhost:8080

366 APPENDIX E Setting up Node.js

your working directory (you may need to log off and back on for the Node folder to

be added to your path):

node app.js

This command will start Node running in the current directory using the file app.js to

determine behavior. Start the Node server with the command shown previously. Once

the Node server is running, point your browser at http://localhost:8080/ and re-create

figure E.1.

E.1.2 Serving static files with Node

Node is a bare-bones web server, which means many things you might take for granted

with more traditional web servers won’t happen in Node, unless you write code to

make them happen. For instance, Node won’t transparently transfer any static files

that happen to be sitting in the execution directory. If you want a file called

index.html to be sent to the browser in response to a request, it’s up to you to detect

the requested URL, locate the file, and then send it in response.

 In this section you’ll create, in four steps, a static file and serve it with Node:

■ Step 1: Create a static file.

■ Step 2: Load a file from a disk.

■ Step 3: Send the file to the browser.

■ Step 4: Run the application.

The end result will look identical to what you achieved in the previous section, but the

architecture will be improved because your display rendering is separated from your

application logic.

STEP 1: CREATE A STATIC FILE

The next listing is a simple index.html file—place it in a new working directory.

<!DOCTYPE html>
<html>
<head>
 <title>Hello</title>
</head>
<body>
Hello world
</body>
</html>

STEP 2: LOAD A FILE FROM A DISK

Now that you have a static HTML file, you need to load it from a disk. Node has a built-

in module for reading files from a disk called fs. You can use the fs.readFile()

method to load a file. Create a new app.js file in your working directory and add the

code from the following listing.

Listing E.2 A static index.html file

http://localhost:8080/

367Setting up Node.js to serve web content

var http = require('http');
var fs = require('fs');

http.createServer(function(request, response) {
 fs.readFile('./index.html', function(error, content) {
 //Code to handle the file goes here
 });
}).listen(8080);

STEP 3: SEND THE FILE TO THE BROWSER

After the readFile() function has completed, your callback function will execute;

you need to check that the file was read successfully and send it to the browser. You

can use the same http module methods from section E.1.1 to do this. Replace the

comment in listing E.3 with the code in the following listing.

 if (error) {
 response.writeHead(500);
 response.end();
 } else {
 response.writeHead(200,
 { 'Content-Type': 'text/html' });
 response.end(content, 'utf-8');
 }

STEP 4: RUN THE APPLICATION

Just as in the last example, start your application from the command line:

node app.js

Point your browser at http://localhost:8080/ and check that you can see the Hello

World page.

 Serving static files isn’t interesting in and of itself, but serving purely dynamic files,

as in section E.1.1, isn’t practical either; in a real application you don’t want your web

designers attempting to edit HTML and CSS inside your JavaScript application logic.

You need to be able to mix static content with the results of the application logic, and

you’ll look at that in the next section.

E.1.3 Serving mixed static and dynamic content with Node

In this section you’re going to create an HTML template file with placeholders that

will be replaced with dynamic values when the page is requested.

STEP 1: CREATE A STATIC TEMPLATE WITH PLACEHOLDERS

The index.html template is shown in the next listing. It’s identical to the previous

index.html file, apart from the added placeholder for the dynamic variable. Create a

new working directory and place this index.html file into it.

Listing E.3 An app.js file that reads a file from a disk

Listing E.4 Sending the file to the browser in app.js

To read from the filesystem,
the fs module is needed.

Two parameters
are required for
readFile(), a path to a
file and a function that
will be called after the
file has been read.

In the next
step you’ll fill
in this code.

If there’s an error reading the file,
it will be handled gracefully here...

...otherwise, send
the file to the user.

http://localhost:8080/

368 APPENDIX E Setting up Node.js

<!DOCTYPE html>
<html>
<head>
 <title>Hello</title>
</head>
<body>
Hello world {0}
</body>
</html>

STEP 2: MIX DYNAMIC CONTENT INTO YOUR TEMPLATE

The following listing inserts dynamic values into a static template file using the stan-

dard JavaScript String.Replace function. Create an app.js file in your working direc-

tory and add this code to it.

var http = require("http");
var fs = require("fs");
var inc = 0;

http.createServer(function(request, response) {
 fs.readFile('./index.html', function(error, content) {
 if (error) {
 response.writeHead(500);
 response.end();
 } else {
 response.writeHead(200, { 'Content-Type': 'text/html' });
 response.end(
 content.toString().replace(/\{0\}/g,++inc),
 'utf-8'
);
 }
 });
}).listen(8080);

STEP 3: TEST IN THE BROWSER

Start Node with your new app.js file as you did in the previous examples, and load the

page in the browser. Each time the page gets refreshed in the browser, the variable

should get incremented once. You can expect the number on the page to increase by

one with every page load. Let’s try it in real time in a few browsers. Figure E.2 shows

the results.

 You may be scratching your head at this result—we certainly did. Chrome’s Net-

work tab in its developer tools shows only a single request, so why does the variable get

incremented twice? The answer is that Chrome makes an additional request that it

doesn’t tell you about for favicon.ico. In case you’re not familiar with it, favi-

con.ico is the standard name for the little icon that appears alongside the URL in the

address bar. Because your Node server is configured to respond to every request with

Listing E.5 A simple template index.html

Listing E.6 Mixing static and dynamic content in app.js

{0} is a placeholder for
your dynamic content.

The file is loaded
as before.

A simple dynamic
page is implemented
by replacing all
instances of {0}
with the value of a
pre-incremented inc.

369Setting up Node.js to serve web content

the same HTML file, it sends that file in response to the request for favicon.ico, too.

This results in the variable being incremented twice.

 To stop this from happening, you need a way to route requests for different

URLs to different server responses. This is called routing and will be the subject of

the next section.

E.1.4 Routing: serving different files for different URLs

Routing is the matching up of the URL requested by the browser with the appropriate

response from the server. The following listing demonstrates a simple approach.

var http = require("http");
var fs = require("fs");
var inc = 0;

http.createServer(
function(request, response) {
 if (request.url === '/index.html' || request.url === '/') {
 fs.readFile('./index.html', function(error, content) {
 if (error) {
 response.writeHead(500);
 response.end();
 } else {
 response.writeHead(200, { 'Content-Type': 'text/html' });
 response.end(

Listing E.7 Simple routing app.js example

+1 +2

Each time the page is

loaded in Firefox, the

variable increments once.

But each time the page

is reloaded in Chrome,

the variable increments

by two. What’s going on?

Figure E.2 The results of reloading the simple dynamic page in Firefox and Chrome

Only respond
with the file to
requests for
index.html or
the default
document.

370 APPENDIX E Setting up Node.js

 content.toString().replace(/\{0\}/g,++inc),
 'utf-8'
);
 }
 });
 } else {
 response.writeHead(404);
 console.log(request.url + ' not found');
 }
}).listen(8080);

The example increments the variable only once for every page reload in Chrome,

because the index.html is sent only to explicit requests for it or for the root document.

 In this section, we’ve provided a low-level understanding of how Node handles web

applications. In real life, you don’t want to spend hours figuring out how to do things

such as sending each individual file to your users, or slicing up your data to fit into

WebSocket frames, or keeping up with all the changes in the specification. To avoid

repeatedly doing the boring stuff in Node.js, you need more modules. But the mod-

ules you’ll need aren’t included as standard with Node like http and fs that you’ve

already used. In the next section, you’ll learn how to go above and beyond the stan-

dard set of modules by downloading third-party modules using the Node Package

Manager (NPM).

E.2 Easy web apps with Node modules

In the previous section, you explored several functions that need to be performed in

Node in order to create real web applications: placing dynamic content inside static

files (or templating) and mapping requests at different URLs to appropriate handlers

(or routing). But you also need to handle WebSocket requests. That was the point of

installing Node in the first place. If you looked at the explanation of the WebSocket

protocol in appendix D, you know that handling WebSockets involves a lot of slicing

and dicing of binary data. This is hardly the use case for which JavaScript was

designed. You don’t want to spend all your time dealing with low-level stuff like that

when you could be writing applications. All of this can be more easily accomplished in

Node by taking advantage of third-party modules. In this section we’ll set you up with

the following modules:

■ Director—for routing

■ Mustache—for templating

■ WebSocket-Node—for the WebSocket protocol

You can easily manage modules with the NPM script. Because modules have become

fundamental to using Node, NPM, once a handy add-on, now comes as part of the

main Node.js distribution.

 It’s easy to install the modules; Node looks for them in the node_modules direc-

tory of the current directory. This will be the same place where your app.js file is

For any other request,
return a 404 not
found error.

371Easy web apps with Node modules

located, so make sure you’re in that directory before installing modules. Then, run

these commands:

npm install director
npm install mustache
npm install websocket

Modules are now installed local to your application, and you have a file structure like

that shown in figure E.3.

 Now you’re going to create an application

that’s going to try loading all three of these mod-

ules and show a message if it is successful. This

will tell you the modules have been installed

correctly. The result is shown in figure E.4.

 The following listing is the app.js file in fig-

ure E.3. Create a new working directory and

add app.js to it. When you run it with Node,

it’ll attempt to load all the modules you’ve

installed and create a simple page.

var http = require("http");
var director = require("director");
var mustache = require("mustache");
var WebSocketServer = require('websocket').server;

var template = '<!DOCTYPE html>\n'
 + '<html>\n'
 + '<head>\n'
 + '<title>Modules test</title>\n'
 + '</head>\n'
 + '<body>\n'
 + 'Director is {{director_status}}
\n'
 + 'Mustache is {{mustache_status}}
\n'
 + 'WebSocket-Node is {{socket_status}}\n'
 + '</body>\n'
 + '</html>';

Listing E.8 An app.js using Director, Mustache, and WebSocket-Node

Figure E.3 Application file

layout with modules installed

Figure E.4 If you see this page,

everything is working correctly.

When installed with NPM, add-on
modules are referenced in the
same way as built-in modules.

Instead of emitting the markup
directly, we’ll use this variable to
store a template for mustache.
In later examples you’ll load the
template from disk.

372 APPENDIX E Setting up Node.js

var dict = {
 'director_status': director.http.Router ? 'working':'broken',
 'mustache_status': mustache.to_html ? 'working':'broken',
 'socket_status' : typeof WebSocketServer !== 'undefined'
 ? 'working':'broken'
};

var html = mustache.to_html(template,dict);

http.createServer(
 function(request, response) {
 response.writeHead(200);
 response.write(html);
 response.end();
 }
).listen(8080);

If everything has gone according to plan, you should see a page similar to that shown

in figure E.4 when you fire up Node and browse to port 8080.

 Now that you know everything is installed correctly you’re ready to build your first

WebSocket application. If you came to this appendix from the build prerequisites (sec-

tion 4.2) in chapter 4, you can head back to that chapter and continue with the build.

This object restores the results of a
few simple tests, which confirm all

the modules loaded correctly.

Mustache is the only
module this example uses.

373

appendix F
Channel messaging

Channel messaging is similar to cross-document messaging (see chapter 4) except

instead of one message channel per window, it allows multiple channels to be cre-

ated. This is useful if you want to build the page out of a number of loosely cou-

pled, event-driven, independent components. Rather than adapt them all to share

a single cross-document messaging interface and ensure they don’t clash with each

other’s internal API for message formats, each component can have its own set of

private channels.

In the next few pages you’ll build a simple test bed by setting up a page that loads a

document from a different domain. You can easily fake running multiple domains

from your own computer, and in this section you’ll walk through setting up two

pages on your computer that run from different domains. One page will load the

other in an iframe, and you’ll use channel messaging to communicate between

the two. Figure F.1 shows the test bed after channel messaging has occurred. You

can use the textboxes to create the messages, and any message received will be

added to the document.

 You can build the example by following these five steps:

■ Step 1: Install a local development web server.

■ Step 2: Set up a cross-domain test environment.

■ Step 3: Create the example pages.

■ Step 4: Add JavaScript to the first page.

■ Step 5: Add JavaScript to the second page.

Channel messaging 4 ~ 10 11 5

374 APPENDIX F Channel messaging

STEP 1: INSTALL A LOCAL DEVELOPMENT WEB SERVER

You’ll need to be able to serve web pages from your local machine. In other words,

you need to have a web server. If you already have one, please skip ahead; otherwise,

follow along, and we’ll review some easy options:

STEP 2: SET UP A CROSS-DOMAIN TEST ENVIRONMENT

To experiment with messaging between scripts in different domains, you need to have

multiple domains available. The easiest way to do this is to fake some domains by

editing the hosts file on your computer. On Windows this file is usually found at

C:\Windows\System32\drivers\etc\hosts (note the lack of a file extension; also note

that this is a system file, so run your editor as administrator); on Mac OS X and Linux

it’ll be found at /etc/hosts. Opening that file in a simple text editor should reveal

some lines like the following:

127.0.0.1 localhost

Add your fake domains to the end of the line starting 127.0.0.1:

127.0.0.1 localhost domain1.com domain2.com

Now you can browse to http://domain1.com and http://domain2.com, and the pages

will be served from your local web server.

Windows Microsoft Visual Web Developer Express comes with a built-in web server. You can easily

create a web application project and place the files you create in the next section within it.

See the download pages at http://mng.bz/gu1b for further details.

Mac Go into System Preferences > Sharing, and check the Web Sharing box. The default folder

is /Library/WebServer/Documents/.

Linux Most Linux distributions come with Python already installed, and Python includes the

SimpleHTTPServer module. To start it, open a command prompt and set the current

directory to the one containing your files; then issue the command python -m
SimpleHTTPServer 8000 to start a server listening on port 8000.

The parent window

Child window

in iframe

Messages received

from child

Messages received

from parent

Figure F.1 A simple channel-messaging example, such as the one you’ll build in chapter

4’s listings 4.5 and 4.6

http://mng.bz/gu1b
http://domain1.com
http://domain2.com

375Channel messaging

STEP 3: CREATE THE EXAMPLE PAGES

First, you’ll need two pages in your working directory. Call them example-1.html and

example-2.html, and add the markup shown in the following listing to the body sec-

tion. This markup is even simpler than the cross-document messaging example in

chapter 4 because JavaScript will add the iframe.

 <ul id="log">
 <form id="msgform">
 <input type="text" id="msg">
 <input type="submit">
 </form>

STEP 4: ADD JAVASCRIPT TO THE FIRST PAGE

Now you need to add code to initiate the messaging.

 Channel messaging works by creating a pair of ports. A port is a generic object that

allows messaging. It supports the postMessage method and onmessage event that you’re

familiar with from cross-document messaging. Anything sent to one port will appear as

output from the other port; in HTML5 terms they’re described as entangled. This is by

analogy to quantum entanglement: two particles that, no matter what distance separates

them, change simultaneously. One of the ports is then sent to another script context.

This could be a script in another document or window or a web worker. Listing F.2

shows the details. The code from listing F.2 should go in a <script> block after the form

in example-1.html (you could add it in the head element, but then you’d need to wrap it

in a function and execute it on the load event). As you can see, the channel-messaging

API is similar to the cross-document messaging API you looked at in chapter 4.

var f = document.getElementById('msgform');
var m = document.getElementById('msg');
var l = document.getElementById('log');

var channel = new MessageChannel();

var w = document.createElement('iframe');
document.body.appendChild(w);
w.setAttribute('src','http://domain2.com/example-2.html');
var sendPort = function() {
 w.contentWindow.postMessage({"code":"port"},
 'http://domain2.com',
 [channel.port2]);
}
w.addEventListener('load', sendPort, false)

Listing F.1 Channel messaging/example-1.html body content

Listing F.2 Channel messaging/example-1.html JavaScript

For convenience, several global variables
are set up; if this was more than a single-
page example, it would be better to wrap
this whole listing in a reusable object.

The MessageChannel constructor
returns a pair of entangled ports.

Create an iframe element
and load a document into it.

Here’s the familiar postMessage function;
the first argument is a string. The value
used here isn’t necessary, but it’ll allow
for easy detection in the other page.

As with
cross-

document
messaging,
the second

parameter is
the domain

the message
is getting

passed to.

The new parameter for channel messaging is an
array of port objects; the second port from the
MessageChannel is passed.

There’s no point in sending the port if
the document isn’t loaded, so wait for
the load event before sending the port.

376 APPENDIX F Channel messaging

var channel_message = function(e) {
 var li = document.createElement('li');
 li.appendChild(
 document.createTextNode(
 'channel:' + JSON.stringify(e.data)
)
);
 l.appendChild(li);
}
channel.port1.onmessage = channel_message;
var send_message = function(e) {
 var s = {};
 s.msg = m.value;
 channel.port1.postMessage(s);
 m.value = '';
 e.preventDefault();
}
f.addEventListener('submit', send_message, false);

STEP 5: ADD THE JAVASCRIPT TO THE SECOND PAGE

Now you need to set up the second page to allow it to receive the port and then send

and receive messages through it. The code from the next listing should go in a

<script> block after the form in example-2.html.

var f = document.getElementById('msgform');
var m = document.getElementById('msg');
var l = document.getElementById('log');
var port;
var receive_port = function(e) {
 var d = typeof e.data === "string"
 ? JSON.parse(e.data)
 : e.data;
 if (d.code == "port") {
 port = e.ports[0];
 port.postMessage("Port received.");
 port.onmessage = function(e) {
 var d = typeof e.data === "string"
 ? JSON.parse(e.data)
 : e.data;
 var li = document.createElement('li');
 li.appendChild(
 document.createTextNode('channel:' + d)
);
 l.appendChild(li);
 }
 var send_message = function(e) {
 var s = {};
 s.msg = m.value;
 port.postMessage(s);
 m.value = '';
 e.preventDefault();
 }

Listing F.3 Channel messaging/example-2.html JavaScript

The first port of your channel
is now entangled with the
port sent to the other
document, so to receive the
messages you need to listen
to the onmessage event.

Reversing that, if you use postMessage on
the first port, the message will appear on
the second port in the other document.

The send_message function is
bound to the form’s submit event
to allow the user to send
messages to the other document.

Several global variables are set up, but this time
there’s no need to create a new MessagePort.
Instead, a variable is created to store the port
that will be sent to this window.

This function will be used when you’re
passed a message from another document.

The convention is that if there’s a
message code of “port,” then
you should grab the attached
port and use it for messaging.
You don’t have to use “port”;
anything else would work as
well, but it’s here that you would
start to define an API for clients.

Store a
reference to

the port in the
global variable.

Let the caller
know the

port has been
received.

Attach a
handler to

the port
message

event.

Any messages received
will be logged.

377Channel messaging

 f.addEventListener('submit', send_message, false);
 }
 var li = document.createElement('li');
 li.appendChild(document.createTextNode('window:' + d));
 l.appendChild(li);
}
window.addEventListener('message', receive_port, false);

Now you’re ready to try to re-create figure F.1. If you’ve been following along, the URL

should be similar to http://domain1.com:8000/example-1.html. The port number

(8000) might be different, depending on which local web server you used; refer to the

documentation for details.

Set up the
form so
the user
can send

messages
back

through
the port.

The fact that a
message event has
been handled is
logged for the benefit
of your audience.

The receive_port handler
is bound to the window.

http://domain1.com:8000/example-1.html
http://domain1.com:8000/example-1.html

378

appendix G
Tools and libraries

It’s important to know what tools and libraries are available for developers looking to

leverage HTML5 APIs. These can save time and make your projects less buggy. In this

appendix, you’ll find out about several tools for mobile and HTML5 applications.

G.1 Tools for mobile web applications

If you’re an experienced web application developer, you’ll probably be familiar

with web and JavaScript frameworks that make your life easier when it comes to

ensuring cross-browser compatibility with your code, or that reduce your workload

by giving you access to UI widgets and components. If so, you may have been won-

dering if there’s any such framework for mobile web applications. Fortunately, the

answer is yes, and there’s a decent choice of frameworks on offer, including:

■ jQuery Mobile

■ Sencha Touch

■ Dojo Mobile

■ Jo

These frameworks provide a means of building mobile web applications that lever-

age HTML5 to create a native app experience. They all feature a set of rich UI com-

ponents that mimic native mobile UI features such as lists, navigation bars, toolbars,

tab bars, form controls, carousels, and more. Each also provides a data abstraction

layer that makes it easier to interact with HTML5’s storage features, which are cov-

ered in chapter 5. All of these frameworks can be used in tandem with frame-

works, such as PhoneGap, for deploying mobile web applications as native apps

on various platforms.

379Tools for HTML5 applications

G.2 Tools for HTML5 applications

This section covers things that you’ll find useful when developing HTML5 applica-

tions. It includes tools within browsers, development versions of browsers, and exter-

nal tools and scripts to make your life easier.

G.2.1 Firebug, Chrome/Safari developer tools, Dragonfly, IE developer tools

When developing HTML5 applications, your development environment will primarily

consist of a text editor or integrated development environment (IDE) and a web

browser. Every web developer should at least have a copy of the latest versions of the

major browsers:

■ Apple Safari

■ Google Chrome

■ Microsoft IE

■ Mozilla Firefox

■ Opera

In addition to installing the major web browsers, you should ensure that you have the

available relevant tools to make your life easier. All of the major browsers now include

a suite of web developer tools. These tools are vital when it comes to testing, debug-

ging, and analyzing the performance of your web pages and applications. The fea-

tures provided by these tools include the following:

■ Console output

■ JavaScript debugging

■ Element and property inspection

■ Network activity and traffic analysis

■ JavaScript performance profiling

■ On-the-fly element styling and manipulation

G.2.2 Browser development versions

In addition to the release (or stable) versions of browsers your users have right now,

you should also consider installing one or more of the development versions. Devel-

opment versions of browsers are where the testing of new features happens, so they

allow you to try out new standards as they’re being finalized and also test your web

applications in the next version of the browser.

 Table G.1 lists the major browsers and where to get development versions of them.

http://www.modernizr.com/

380 APPENDIX G Tools and libraries

The different browsers’ development versions each use their own terminology. Table G.2

will help you to understand what to expect from each version.

G.2.3 HTML5 Shiv

HTML5 Shiv is a shim (a small, compatibility-focused library) for enabling support

for HTML5’s new elements in older versions of IE. That it’s called HTML5 Shiv rather

than HTML5 Shim is an accident of history, but it does serve to differentiate it from

the large number of shims that have arisen around HTML5 in recent years. Down-

load the latest version from https://github.com/aFarkas/html5shiv or use Modernizr

(described in the next section), which includes the Shiv.

G.2.4 Modernizr

One of the problems with using HTML5 is the lack of consistent browser support for

the various features defined in the specification. For example, the new autofocus

Table G.1 Browsers and their development versions

Browser Development Versions

■ Chrome Beta: https://www.google.com/landing/chrome/beta/ (can’t be installed side by

side with stable or dev versions)

■ Chrome Dev: http://mng.bz/XKev (can’t be installed side by side with stable or beta versions)

■ Chrome Canary: https://tools.google.com/dlpage/chromesxs (can be installed side by

side with stable, beta, or dev versions)

■ Firefox Beta: https://www.mozilla.org/en-US/firefox/beta/

■ Firefox Aurora: https://www.mozilla.org/en-US/firefox/aurora/

■ Firefox Nightly: http://nightly.mozilla.org/

Internet Explorer has a much slower release cycle than the other major browsers, so there

isn’t a regular snapshot available. Check http://ie.microsoft.com/testdrive/ for information

on any beta versions or release candidates available.

Opera: Beta and alpha versions are called Opera Next; get them here:

http://www.opera.com/browser/next/

Whether a particular Opera Next release is a beta or an alpha depends on how close to the

next release they’re getting; closer to release and they’ll be betas.

Safari: There are no beta releases of Safari as such, but you can download a nightly version

of the WebKit rendering engine that powers Safari and use it within your existing Safari

install: http://nightly.webkit.org/

Table G.2 Development version terminology

Term Description

Beta/Release Candidate Mostly stable and approaching release, updated once every week or two

Dev/Aurora/Alpha Not guaranteed to be stable, updated once a week or more

Nightly/Canary Cutting edge and unstable, updated every night

https://www.google.com/landing/chrome/beta/
http://mng.bz/XKev
https://tools.google.com/dlpage/chromesxs
https://www.mozilla.org/en-US/firefox/beta/
https://www.mozilla.org/en-US/firefox/aurora/
http://nightly.mozilla.org/
http://ie.microsoft.com/testdrive/
http://www.opera.com/browser/next/
http://nightly.webkit.org/
https://github.com/aFarkas/html5shiv

381Tools for HTML5 applications

attribute for input elements works in Firefox4 but not in Firefox3.6. Safari4 didn’t

have support for WebSockets; these were introduced in Safari5. With the ever-expanding

set of features in HTML5, and the ever-changing state of browser support among the

major vendors, it would be exhausting trying to maintain a list of which browser sup-

ports which feature.

 You can use JavaScript to easily detect if the visitor’s browser supports a particular

feature. For example, to check if they have support for offline applications, you’d use

the following code:

!!window.applicationCache

This statement will evaluate to true if the HTML5 application cache is supported or

false if it is not. Unfortunately, not every HTML5 feature is detected in the same way.

Local storage is also implemented as a property of the window object. As such, you

might expect the following to work:

!!window.localStorage

This will work in many places, but if you try to use it in a debugging tool like Firebug, it

will raise a security exception. Instead, you can consistently use the following statement:

'localStorage' in window

To detect some features, you have to go to much more trouble than the previous

approach. Let’s take the <canvas> element as an example:

!!document.createElement('canvas').getContext

This code basically creates a dummy <canvas> element and calls the getContext

method on it. The double-negative prefix on this statement will force the result of this

expression to evaluate to either true or false, in this case informing you of whether

or not the browser supports the <canvas> element.

 As a final example, let’s look at how you’d detect one of the new HTML5 form

input element types, in this case the date type:

var el = document.createElement('input');
el.setAttribute('type', 'date');
el.type !== 'text';

Pretty ghastly stuff, huh? Of course, you could wrap this in a function to make it reus-

able, but writing functions for each and every HTML5 feature would be painstaking.

Thankfully, there’s a JavaScript library named Modernizr that does all this for you.

 To use Modernizr, grab the minified JavaScript source file for the library from

http://www.modernizr.com, and include it in your HTML document by adding it to

the <head> section:

<script src="modernizr-1.7.min.js"></script>

http://www.modernizr.com

382 APPENDIX G Tools and libraries

You’ll also need to add a class attribute to your document’s <html> element, with the

value no-js, as follows:

<html lang="en" class="no-js">

You can now use Modernizr to detect support for various HTML5 features. Let’s see

how you’d use it to detect the four features we detected earlier in this section:

Modernizr.applicationcache //true if offline apps supported
Modernizr.localstorage //true if local storage supported
Modernizr.canvas //true if canvas supported
Modernizr.inputtypes.date //true if date input type supported

We’re sure you’ll agree that this is much easier to remember and read. Modernizr

also adds a host of CSS classes to the <html> element of your document to indi-

cate if a particular feature is available in the visitor’s browser. This allows you to

serve up different styles to users based on whether their browser supports a given

feature. For further information on the Modernizr library, visit the project’s website

at http://www.modernizr.com.

G.2.5 HTML5 Boilerplate

If you’re building an HTML5 application from scratch, there’s quite a lot to watch out

for. Ensuring your app is cross-browser compatible, supporting caching in an efficient

manner, optimizing for mobile browsers, performance profiling, unit testing, writing

printer-friendly styles—these are just a sample of the various complexities that come

with the territory when building modern web applications.

 Rather than learning about and catering to all of these issues individually, wouldn’t

it be nice if you could get up and running quickly using a template that takes care of

all of this for you? This is exactly what the HTML5 Boilerplate does. The following is

just a snippet of the features the Boilerplate includes:

■ Modernizr

■ jQuery (hot-links to a Google-hosted file for performance, with a local fallback)

■ Optimized code for including Google Analytics

■ Conditional comments to allow for Internet Explorer–specific styling

■ CSS reset, printer-friendly styles

■ Google-friendly robots.txt file

■ .htaccess file jam-packed with site-optimization goodness

We highly recommend using HTML5 Boilerplate as a starting point for all of your

HTML5 applications. As the creators of the Boilerplate point out, it’s Delete-key

friendly, so if you don’t want to include anything that comes as part of the Boiler-

plate, you can remove it. The latest version of the project also supports custom

builds, allowing you to include only those parts that you really need. For further

information and to download the HTML5 Boilerplate, visit the project’s website at

http://html5boilerplate.com.

http://www.modernizr.com
http://html5boilerplate.com

383Tools for HTML5 applications

G.2.6 jsFiddle

Sometimes you may want to try out HTML, CSS, and JavaScript code quickly and store it

as a snippet that you can return to at some point in the future. To do this on your own

machine, you’d need to open a text editor, create one or more text files (if you want to

separate the HTML, CSS, and JavaScript elements), save the files, and open them in a

browser. If you wanted to share the snippet, you’d need to upload the files to a web

server, and the person you’re sharing with must use their browser’s View Source feature

to see the code behind it. This is, quite frankly, a bit of a pain. Wouldn’t it be great if

there were an integrated solution that allows you to enter HTML, CSS, and JavaScript

code and view the results in a single window? How awesome would it be to be able to

save that snippet so that when you share it, the recipient sees the same view as you?

 There is a nifty little web application named jsFiddle that provides all of this func-

tionality. Not only that, but it also gives you a really simple way to include various

JavaScript libraries, tidy up your markup, check the validity of your JavaScript code

with JSLint, test AJAX requests, and much more besides. A screenshot of jsFiddle in

action is shown in figure G.1.

Figure G.1 The jsFiddle web app allows you to quickly write HTML, CSS, and JavaScript code and see

a preview of the result, all in a single browser window.

384 APPENDIX G Tools and libraries

To use jsFiddle, simply visit http://jsfiddle.net—you don’t even need an account.

Check out the examples to get an idea of some of the neat things you can do with this

excellent tool.

G.2.7 Feature support websites

For information on the current implementation status of new features, there are a

couple of useful websites:

■ http://caniuse.com/

■ http://html5test.com/

http://jsfiddle.net
http://caniuse.com/
http://html5test.com/

385

appendix H
Encoding with FFmpeg

You can convert video between container formats and re-encode the audio and

video streams within them using several different utilities. In this appendix you’ll

concentrate on FFmpeg, a command-line tool. Let’s review several good reasons for

using this tool:

■ It’s open source and freely downloadable.1

■ It’s available for all the major client and server platforms: Windows, OS X,

and Linux.

■ Command-line tools lend themselves to scripting, if you have to process

many videos.

■ It can be called from server-side code.

Let’s also look at disadvantages:

■ You may be unfamiliar with command-line tools if you’ve mainly used Win-

dows OSes.

■ The sheer flexibility of FFmpeg means it has a confusing plethora of options

and configurations.

In this appendix, we’ll do our best to walk you through using FFmpeg, but if

you’re planning to do serious video work, you’ll need to get down to the nuts

and bolts. If you’re only interested in playing around with the video element

itself, you can just stick with an easy-to-use tool such as Miro Video Converter

(http://www.mirovideoconverter.com/).

1 FFmpeg is free, but you may be required to pay a licensing fee to the MPEG-LA if you use it to encode
h264 video.

http://www.mirovideoconverter.com/

386 APPENDIX H Encoding with FFmpeg

H.1 How to get FFmpeg

If you don’t have FFmpeg, the first thing you need to do is to install it. FFmpeg is pri-

marily distributed as source code. Fortunately, several helpful developers have pro-

duced binary versions of it for all the major platforms. Check the officially sanctioned

downloads on the website for Windows binaries: http://ffmpeg.org/download.html. If

you have a Mac, go here: http://ffmpegmac.net.

 If you run Linux, or your server does, FFmpeg will almost certainly be available

through one of your standard repositories (although possibly in the non-free section).

Note that to do any encoding, you’ll also need libraries to supply the codecs (like MP4 or

OGG). On Linux, you’ll download them using the same package manager you used to

install the main binary, but Windows and Mac users may have to do a bit of extra work.

NOTE If you have problems with the examples in this section, we recommend
using a virtual machine and installing one of the popular Linux distributions
on it. The examples in this chapter have been tested with Fedora 17 using
FFmpeg version 0.10.4 recompiled from the source RPM to enable FAAC.

H.2 Finding out what codecs were used on source video

The first useful thing you can do with FFmpeg is investigate which codecs have been

used on your source video. Following is an example command line:

ffmpeg -i VID_20120122_132134.mp4

This code will produce a whole load of output describing what options your FFmpeg

binary was built with, but at the end you should see something like what’s shown in

the following listing.

Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'VID_20120122_132134.mp4':
 Metadata:
 major_brand : isom
 minor_version : 0
 compatible_brands: isom3gp4
 Duration: 00:00:11.59, start: 0.000000, bitrate: 3259 kb/s
 Stream #0.0(eng): Video: h264, yuv420p, 720x480, 3014 kb/s, PAR
 65536:65536 DAR 3:2, 30.01 fps, 90k tbr, 90k tbn, 180k tbc
 Stream #0.1(eng): Audio: aac, 16000 Hz, mono, s16, 95 kb/s

For comparison, the next listing shows the output from a file recorded on a “proper”

HD video camera.

Input #0, mpegts, from '00003.MTS':
 Duration: 00:00:46.59, start: 0.332544, bitrate: 13305 kb/s
 Program 1

Listing H.1 Output from the ffmpeg -i command

Listing H.2 Output from the ffmpeg -i command

Describes the container format; in this case it
includes a number of equivalent file extensions.

Summarizes
the entire
content—
video and

audio.

Stream #0.0
is the video
stream,
h264
encoded.

Stream #0.1
is the audio
stream, AAC

encoded.

This time the
container format
is mpegts.

http://ffmpeg.org/download.html
http://ffmpegmac.net/

387Encoding to MP4/h264 with AAC

 Stream #0.0[0x1011]: Video: h264, yuv420p, 1920x1080 [PAR 1:1 DAR
 16:9], 50 fps, 50 tbr, 90k tbn, 50 tbc
 Stream #0.1[0x1100]: Audio: ac3, 48000 Hz, 5.1, s16, 384 kb/s

H.3 Determining container formats and supported codecs

A couple of other useful commands allow you to check what formats and codecs

your version of FFmpeg has available. To see a list of available container formats, issue

this command:

ffmpeg -formats

The hyphen indicates a parameter. What comes immediately after the parameter is

the parameter name. In the previous command line the parameter is formats; in the

command line at the start of the section the parameter is i, for input file, followed by

the data for that parameter. Here it is again to remind you:

ffmpeg -i VID_20120122_132134.mp4

To see the list of supported codecs, issue this command:

ffmpeg -codecs

Now that you’ve learned the basics, the next few sections will cover converting to sev-

eral key video formats. Note that all of the listings that follow show each ffmpeg

option on a line by itself for clarity, but when you type the commands into the termi-

nal, they should all be on a single line.

H.4 Encoding to MP4/h264 with AAC

The videos you’re using in this appendix are already MP4 containers with h264 video

and AAC audio. This means for the application you don’t need to know how to convert

files to this format. In fact, because h264 is a lossy format, re-encoding the files to MP4

at the same resolution will lower the quality. But in real applications it’s likely your

source video is in a different format or is at least an HD recording (for example, 1080p

Recompiling FFmpeg to add codec support

As mentioned in the previous note, the examples in this chapter have been tested

with Fedora 17 using FFmpeg version 0.10.4 recompiled from the source RPM to

enable FAAC. This was necessary because the Fedora version of FFmpeg doesn’t

support AAC by default. Although this may sound scary, it’s a straightforward pro-

cess on Linux; check out this blog post for a description of the process we followed:

http://mng.bz/hF3O.

On Windows and Mac, you may have to search around for a build of FFmpeg that sup-

ports all the required codecs.

The first stream is again an h264-encoded
video, but this time it’s 1080p HD.

This time the second stream
is AC3 (Dolby Digital).

http://mng.bz/hF3O

388 APPENDIX H Encoding with FFmpeg

is 1920px by 1080px resolution), and one of your key targets will be iOS devices, where

all those extra pixels will be wasted. Fortunately, FFmpeg allows you to re-encode a

video at a lower resolution in the same way you would re-encode to a different format.

A command line for encoding to MP4 with h264 and AAC is shown in the following list-

ing. Again, although it’s shown across multiple lines for clarity, you should type it into

your command prompt in a single line.

ffmpeg -i VID_20120122_133702.mp4
 -acodec libfaac
 -b:a 96k
 -vcodec libx264
 -preset slower -preset main
 -level 21
 -refs 2
 -b:v 3000k
 -s 720x480
 VID_20120122_133702_2.mp4

The input video can be any format that FFmpeg supports. If you have a non-MP4 video,

replace the filename (after the -i) with your video.

H.5 Encoding to MP4/h264 with MP3

Converting from AAC audio to MP3 isn’t a common requirement for web develop-

ment, but it does allow us to demonstrate another useful feature of FFmpeg. As you

already know, h264 is a lossy codec, so re-encoding h264 at the same resolution will

reduce quality. But sometimes you may want to re-encode the audio—how can you do

that without reducing the quality of the video? Our next listing has the answer—again,

type it into your command prompt on a single line.

ffmpeg -i VID_20120122_132134.mp4
 -acodec libmp3lame
 -b:a 96k
 -vcodec copy
 VID_20120122_132134_3.mp4

You can use the copy codec for several tricks like this. It’s also useful if you want to con-

vert between container formats without re-encoding either the audio or video streams.

Listing H.3 ffmpeg command line

Listing H.4 ffmpeg command line

This example is re-encoding a video at the
same bit rate and the same resolution; in
real life there’s no need to do this.

The libfaac
encoder (AAC)

provides the
audio codec. The audio bit rate will be

96 kilobits per second.

The libx264
encoder (h264)

provides the
video codec.

FFmpeg includes several presets,
which means you don’t have to
repeatedly enter large numbers
of command-line options; these
two specify using the slower
(higher-quality) encoding method
and the main h264 profile.

The video bit rate will be approximately 3,000
kilobits per second; lower this number to make
a smaller, lower-quality version of the file.

The output video resolution. Adjust this to make a smaller
version of the video. Although you could also use this to make
a higher-resolution video, doing that will reduce the quality.

Re-encode the audio to MP3
using the libmp3lame codec.

Use the copy codec so the video
stream is copied across unchanged.

389Encoding to Ogg/Theora

H.6 Encoding to WebM/VP8

It’s likely that WebM will be your second most required format after MP4. With MP4 and

WebM format videos, you’ll have more than 80% of desktop browser users supported

and significant mobile platforms, including iOS and Android. The next listing shows

the command line for converting to the WebM format, using its associated VP8 video

codec and Ogg audio.

ffmpeg -i VID_20120122_133702.mp4
 -acodec libvorbis
 -ac 2
 -b:a 96k
 -ar 44100
 -vcodec libvpx
 -b:v 3072k
 -s 720x480
 VID_20120122_133702.webm

H.7 Encoding to Ogg/Theora

Every browser that supports Ogg/Theora also supports WebM, which means most of the

time it’ll be technically unnecessary to create an Ogg/Theora version of your video. But

if you want to support the older versions of those browsers or you prefer the Ogg/

Theora format for ideological reasons, your best bet is to download ffmpeg2theora.

This is a command-line tool based on the FFmpeg libraries that works out all of the

correct video encoding settings: http://v2v.cc/~j/ffmpeg2theora/.

 Binaries are available for all the major OSes. It’s similar to FFmpeg in how you use

it; an example command is shown here.

ffmpeg2theora
 --optimize
 --deinterlace
 -v 7.8
 -F 30
 -x 720
 -y 480
 -A 96
 -c 2
 -H 44100
 -o VID_20120122_132134.ogv
 VID_20120122_132134.mp4

Listing H.5 FFmpeg command line

Listing H.6 Use ffmpeg2theora to convert to Ogg/Theora video

The input file is an MP4, but it doesn’t matter what
format it’s in as long as FFmpeg can decode it.

The libvorbis
encoder

(Ogg audio)
provides the
audio codec.

Two audio channels will
be used (stereo playback).The audio

bit rate will
be around
96 kilobits

per second.

The audio sample frequency
will be 44100 hertz.

The video bit rate will be
around 3,072 kilobits per
second, which should provide
comparable file size to the
MP4 original from a phone.

The size of the output video
will be 720 pixels by 480
pixels, the same as the
original in this case.The output filename

The video quality—this was chosen by trial and
error to give a similar file size to the original.

The frame rate—ffmpeg2theora uses the input
frame rate if you leave off this parameter.

Size of the video.

Audio bit rate.

Number of audio channels.

Audio sample rate.

Output filename.

http://v2v.cc/~j/ffmpeg2theora/

390

appendix I
HTML next

This book concentrates on how best to use the major features of HTML5 available

in browsers right now. In this appendix, we’ll look at HTML5 capabilities that aren’t

yet finalized and are under heavy development in a browser’s beta versions, such as

video captioning, media capture, and full-screen modes. You’ll also learn about sev-

eral proposed features so you can plan for these features of the future web plat-

form, such as peer-to-peer connectivity (for example, for video conferencing) and

rotation lock (so that games on mobile devices don’t keep flipping between land-

scape and portrait modes).

 Specifically, we’ll cover the following:

■ Accessing and sharing media

■ Providing subtitling and captions for media

■ Capturing mouse events outside the bounds of an element

■ Expanding elements to full screen

■ Measuring orientation to control animation

■ Locking the pointer to the center of the screen.

I.1 Accessing and sharing media devices

Many devices where HTML5 is expected to be used come equipped with built-in

cameras, but until now you’ve needed to use Flash or write a native application to

get access to them. One of the goals of the HTML5 spec was to build an open appli-

cation platform to replace native apps in common use cases. With this in mind a

W3C working group has been set up to produce standards for real-time media

access and communication (http://www.w3.org/2011/04/webrtc/). The charter of

this group specifically mentions six deliverables, summarized in table I.1 alongside

pointers for the features we’ll discuss in this section.

http://www.w3.org/2011/04/webrtc/

391Accessing and sharing media devices

In this section you’re going to learn about the experimental implementation for

point 2 in table I.1, getUserMedia(), as well as discuss point 4, which, in concert

with getUserMedia(), will allow the creation of web applications for telephony and

video conferencing.

I.1.1 Grab input with getUserMedia()

The getUserMedia() function allows you to grab a media stream from the user’s

device and use it within the browser. The current focus is on audio and video streams,

since the elements to output those already exist in HTML5, but there’s no reason why

other sources of data couldn’t be accessed in the future and handled with the File API

(see chapter 3) or new elements.

 Opera, Google, and Mozilla have already implemented a significant chunk of the

functionality targeted by the working group thanks to getUserMedia(). You will, of

course, need a PC or laptop with a webcam. You could also use your mobile phone or

tablet device, but then you’d need some way of making the files you create on your

computer available over the network your device is on. This might involve setting up a

local web server and possibly fiddling around with your firewall and router settings to

allow access to it, or if you already have a web server online, you could upload your

files to that.

Table I.1 Deliverables of the Web Real-Time Communications Working Group

Deliverable Being worked on? In this appendix?

1. API functions to explore device capabil-

ities; e.g., camera, microphone,

speakers

In scope for the Device APIs & Policy

Working Group

Not covered

2. API functions to capture media from

local devices (camera and microphone)

In scope for the Device APIs & Policy

Working Group, experimental imple-

mentations available

Covered in sec-

tion I.1.1

3. API functions for encoding and other

processing of those media streams

Not covered

4. API functions for establishing direct

peer-to-peer connections, including

firewall/NAT traversal

Being worked on at the IETF, experi-

mental implementations available

Discussed in sec-

tion I.1.2

5. API functions for decoding and pro-

cessing (including echo canceling,

stream synchronization, and a number

of other functions) of those streams at

the incoming end

Not covered

6. Delivery to the user of those media

streams via local screens and audio

output devices

Part of the HTML5 specification

work, experimental implementations

available

Covered in chap-

ter 8

392 APPENDIX I HTML next

In this section, to demonstrate how to use getUserMedia(), you’re going to modify

the video telestrator jukebox code from chapter 8 to accept video input from your

camera. Figure I.1 shows what you’re going to be finishing up with—a live video

stream that you can telestrate.1

 The method signature for getUserMedia() is shown in the first listing. It follows

the pattern of accepting an array of options along with callback functions, similar to

the Geolocation API (see chapter 3).

getUserMedia(options,
 successCallback,
 errorCallback)

getUserMedia() 21 191 N/A 12.0 N/A

1 In Firefox 19 you need to set media.enabled to true in about:config to turn on the experimental support.

Listing I.1 getUserMedia() method signature

Figure I.1 Author Rob Crowther after tweaking the code from the video

telestrator application in chapter 8 to incorporate a live video stream. With

the live video stream appearing on the browser, Rob was then able to

telestrate, or draw, additional features on his face, perhaps to impress a

potential client during a video meeting.

An object specifying what sort of media stream
you’re after, currently either {audio: true} or
{video: true} but extensible in the future (e.g.,
devices with multiple cameras).

Called if the media stream
is grabbed successfully.

Called if an error occurs when
grabbing the media stream.

http://media.tojicode.com/q3bsp/
http://media.tojicode.com/q3bsp/

393Accessing and sharing media devices

The following shows practical code for making getUserMedia work in Opera and

Chrome. It will grab a video stream from the camera and pipe the output directly into

a video element. The annotations indicate where this code fits in the finished code

(index-8.html) from chapter 8.

var context = canvas[0].getContext('2d');
navigator.getUserMedia =
 navigator.getUserMedia ||
 navigator.mozGetUserMedia ||
 navigator.webkitGetUserMedia;
if (navigator.getUserMedia) {
 navigator.getUserMedia({ video: true },
 successCallback,
 errorCallback);
 function successCallback(stream) {
 console.log('success');
 if (window.webkitURL) {
 v.src = window.webkitURL.createObjectURL(stream);
 } else {
 v.src = stream;
 }
 v.play();
 }
 function errorCallback(error) {
 console.error('An error occurred: [CODE ' + error.code + ']');
 return;
 }
} else {
 console.log('Native web camera streaming (getUserMedia)
 is not supported in this browser.');
}

Now that you have the stream in the video element, everything else functions as before.

The canvas element grabs frames from the video, mixes them with the telestrator

graphics, and outputs the whole thing.

 Being able to let a user display a picture of themselves is a cool gimmick. You can

probably see how this could be extended to more practical applications such as snap-

ping photos for entrance badges. But the main goal of this functionality is to allow you

to share a video stream across the internet, enabling such applications as video chat.

The plan for the future is to combine getUserMedia() with peer-to-peer communica-

tion protocols. This will enable the creation of video conferencing and telephony

applications within the browser; the next section briefly discusses the standard aimed

at achieving this, WebRTC (Web Real Time Communication).

Listing I.2 getUserMedia working in Chrome, Opera, and Firefox

Find this line in the finished code from chapter 8; the new code goes
after it. You can remove the change_video() function and binding.

Currently Opera has implemented an unprefixed
version of getUserMedia in the beta version, whereas
Chrome and Firefox have a prefixed version.

Everything below is conditional on
support existing in the user’s browser.

Request a
video stream.

In older
examples

you’ll see a
simple string

‘video’ passed;
the current
syntax is to

pass in an
object.

Called if the video stream
is grabbed successfully.

Called if
it all goes

horribly
wrong.

Chrome supports
the File API; in
that browser you
have to pass the
stream through
createObjectURL.

In Opera and Firefox,
attach the stream directly
to the video element.

394 APPENDIX I HTML next

I.1.2 Peer-to-peer media connections with WebRTC

The WebRTC specification is focused on initiating a peer-to-peer connection between

two browsers and allowing them to send media streams to each other; a common

application of this would be internet telephony or video chat. Google and Mozilla

have recently announced their initial implementations of this standard in the develop-

ment versions of Chrome and Firefox. The following listing shows an excerpt from the

Mozilla blog post announcing the availability of the feature,2 to give you an idea of

how the final standard will work.

function initiateCall(user) {
 navigator.mozGetUserMedia({video:true, audio:true},
 function(stream) {
 document.getElementById("localvideo").mozSrcObject = stream;
 document.getElementById("localvideo").play();
 document.getElementById("localvideo").muted = true;
 var pc = new mozRTCPeerConnection();
 pc.addStream(stream);

 pc.onaddstream = function(obj) {
 document.getElementById("remotevideo").mozSrcObject = obj.stream;
 document.getElementById("remotevideo").play();
 };

 pc.createOffer(function(offer) {
 pc.setLocalDescription(offer, function() {
 peerc = pc;
 jQuery.post("offer", {
 to: user,
 from: document.getElementById("user").innerHTML,
 offer: JSON.stringify(offer)
 },
 function() { console.log("Offer sent!"); }
).error(error);
 }, error);
 }, error);
 }, error);
 }

Because there’s no stable support for this feature in current browsers, we won’t go

into further detail at this point. Instead, in the next section you’ll look in detail at

another experimental feature that’s complementary to audio playback: subtitling

and captioning.

2 Maire Reavy and Robert Numan, editor, “Hello Chrome, it’s Firefox calling!”, Mozilla Hacks.Mozilla.org, Feb.
4, 2013, http://mng.bz/kbLL.

Listing I.3 Initiating a peer-to-peer video chat with WebRTC

The same getUserMedia
function you were using
in the previous section.

Firefox object
that creates a
PeerConnection.

Local stream is added to
the PeerConnection object.

An addstream
event will be

fired when
the remote

client
connects;

the remote
stream will
be part of
the object

parameter.

A connection is initiated
by sending an offer via
an intermediate server
using a standard HTTP
POST request.

http://mng.bz/kbLL

395Media text tracks: providing media subtitles and captioning

I.2 Media text tracks: providing media subtitles and captioning

Grabbing webcam and microphone input isn’t the only experimental feature in the

works for HTML5 media; another potentially very useful feature is text tracks. The cen-

tral feature of text tracks is to provide subtitles and captioning for hearing-impaired

users. All that boils down to is a file format for describing bits of information associ-

ated with time spans and a means of presenting that information within the browser.

With an API, this sort of structure could be useful in all sorts of ways if you want things

to happen in your pages at certain times during playback of media. For example, if

your page contained both a video of a presentation and a widget showing the slides

from the presentation, then you might want the slideshow widget to automatically

switch to the next slide in time with the video.

 Fortunately, HTML5 provides such an API. In this section you’re going to learn how

to use text tracks and the Text Track API by adding subtitles to one of the videos used

in chapter 8. Figures I.2 and I.3 show the basic idea: subtitles overlaid on the video

corresponding to the current action.

 To make this work you’ll need Chrome 18 or later, and you should enable the track

element in the about:flags page; in more recent versions of Chrome (24 and later),

Figure I.2 On the playing video,

the caption reads “PASS.”

Figure I.3 Later on the playing video,

the caption reads “INTERCEPTION.”

396 APPENDIX I HTML next

it’s enabled by default. The file index-3.html from the chapter 8 code will be used as

the basis for your experimentation here.

I.2.1 Adding a text track to the videoText

Tracks come in cue files, files containing a series of timestamped cues (the word

comes from theater and film/television; think of an actor onstage waiting for a cue to

deliver a line). Chrome supports the WebVTT (Web Video Text Tracks) file format for

cue files; a sample for you to use is shown in the following listing. To keep things sim-

ple in the long run, save this in a file with a name similar to the video file associated

with it, such as VID_20120122_133036.vtt.

WEBVTT

1
00:00:00.400 --> 00:00:01.500
DOWN

2
00:00:01.800 --> 00:00:02.900
SET

3
00:00:03.500 --> 00:00:04.600
HUT

4
00:00:05.000 --> 00:00:07.000
PASS

5
00:00:08.000 --> 00:00:10.000
INTERCEPTION

To associate the WebVTT file with a <video> element, add a <track> element, as

shown in the next listing. Use the index-3.html file from chapter 8’s code download;

Text Track API 18 N/A 10 N/A N/A

Local web server required

If you try to run any of the examples in this section directly from the filesystem (with

a file:/// URI), then Chrome will fail to load the Text tracks because of cross-

domain security restrictions. In order to make them work, you’ll need to either run

a local web server (see appendix F where this is discussed) or upload them to an

online server.

Listing I.4 VTT Captions VID_20120122_133036.vtt

A WebVTT file always
starts with the identifier
WEBVTT on a line by itself.

The file is made up of a
number of cues; each one
starts with an identifier.

Each cue has a time span to
which it applies, (hh:mm:ss.iii)
written twice separated by -->.

Text
content

of the cue.

A blank line separates
one cue from the next.

The file can contain as
many cues as necessary.

397Media text tracks: providing media subtitles and captioning

then you can drop the video element shown in the listing in place of the one already

in that file and save it with a new name.

<video controls
 width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4" type="video/mp4">
 <source src="videos/VID_20120122_133036.webm" type="video/webm">
 <track src="tracks/VID_20120122_133036.vtt"
 kind="captions"
 default>
 Your browser does not support the video element, please
 try downloading
 the video instead
</video>

And that’s all there is to it. With these two additions you can now play the video to re-

create the screenshots from the introduction. Check the file index-vtt-1.html in the

code download for the complete listing.

I.2.2 Adding multiple text tracks

Things get more fun when you add multiple <track> elements. The kind attribute in

listing I.5 can be set to several different values depending on the purpose of the timed

track. A full list is shown in table I.2.

In this section, you’re going to build a simple UI for switching from captions to subti-

tles to descriptions. Figure I.4 shows video with the caption selected; figure I.5 shows

Listing I.5 index-vtt-1.html, video element with a captions track

Table I.2 Values for the kind attribute

Kind Description

subtitles Transcription or translation of the dialogue, suitable for when the sound is avail-

able but not understood (e.g., because the user doesn’t understand the language

of the media resource’s audio track). Overlaid on the video.

captions Transcription or translation of the dialogue, sound effects, relevant musical cues,

and other relevant audio information; suitable for when sound is unavailable or not

clearly audible (e.g., because it’s muted or drowned out by ambient noise, or

because the user is deaf). Overlaid on the video; labeled as appropriate for the

hearing-impaired.

descriptions Textual descriptions of the video component of the media resource, intended for

audio synthesis when the visual component is obscured, unavailable, or not

usable (e.g., because the user is interacting with the application without a screen

while driving, or because the user is blind). Synthesized as audio.

chapters Chapter titles, to be used for navigating the media resource. Displayed as an inter-

active (potentially nested) list in the user agent’s interface.

metadata Tracks intended for use from script. Not displayed by the user agent.

The <track>
element; it
should go
after any
<source>
elements but
before any
other content.

The kind of
track this is.

See more
on kinds of

tracks in
section F.2.2.

Use this track as
the default.

398 APPENDIX I HTML next

the subtitles after clicking the middle button. The third button, for descriptions, you’ll

deal with in the following section.

 For this to work you’ll need additional WebVTT files. Listings I.6 through I.8 show

the files you need for the captions, subtitles, and descriptions. Note that the long file-

names are provided in code comments.

Listing I.6 Captions Listing I.7 Subtitles Listing I.8 Descriptions

//
VID_20120122_133036-
captions.vtt

WEBVTT

1
00:00:00.400 -->
00:00:01.500
Players line up

2
00:00:01.800 -->
00:00:02.900
Offense gets ready

3
00:00:03.500 -->
00:00:04.600
The ball is snapped

4
00:00:05.000 -->
00:00:07.000
It’s a pass

//
VID_20120122_133036-
subtitles-enGB.vtt

WEBVTT

1
00:00:00.400 -->
00:00:01.500
DOWN

2
00:00:01.800 -->
00:00:02.900
SET

3
00:00:03.500 -->
00:00:04.600
HUT

4
00:00:05.000 -->
00:00:07.000
PASS

//
VID_20120122_133036-
description.vtt

WEBVTT

1
00:00:00.000 -->
00:00:04.000
A rugby field in
Oxfordshire, American
Footballers get ready
for the play

2
00:00:04.000 -->
00:00:08.000
The ball is snapped,
the quarterback drops
back to pass

3
00:00:08.000 -->
00:00:09.000
The pass is thrown
wide of the receiver,

Figure I.4 Video with

captions selected

Figure I.5 Video with

subtitles selected

399Media text tracks: providing media subtitles and captioning

Now add the files to the <video> element in multiple <track> elements, as shown in

the following listing.

<video controls
 width="720" height="480">
 <source src="videos/VID_20120122_133036.mp4" type="video/mp4">
 <source src="videos/VID_20120122_133036.webm" type="video/webm">
 <track src="tracks/VID_20120122_133036-captions.vtt"
 kind="captions"
 default
 label="Captions">
 <track src="tracks/VID_20120122_133036-subtitles-enGB.vtt"
 kind="subtitles"
 srclang="en-GB"
 label="English Subtitles">
 <track src="tracks/VID_20120122_133036-description.vtt"
 kind="descriptions"
 label="Text Description">
 Your browser does not support for video element, please
 try downloading
 the video instead
</video>

Next, you’ll need buttons to hang the functionality from. Just as you did in chapter 8,

add a <menu> to the page under the <video> element that looks like the following code.

<menu>
 <button>Captions</button>
 <button>Subtitles</button>
 <button>Descriptions</button>
</menu>

Finally, you need code that makes actions happen when the buttons are clicked. You

can reuse the menu-handling function from chapter 8 with appropriate changes to

reflect the new functions. The code is shown in the next listing.

5
00:00:08.000 -->
00:00:10.000
It’s picked off

5
00:00:08.000 -->
00:00:10.000
INTERCEPTION

a defender makes the
interception

4
00:00:09.000 -->
00:00:12.000
The defender sets off
with the ball, the
offensive players in
pursuit

Listing I.9 <video> element with multiple <track> elements

Listing I.10 A <menu> for choosing the text track

As before, <track> elements come after <source>
elements and before any other content.

The kind attribute
differentiates
the tracks.

Each track
can also have

a label; in
the future it
is envisaged
user agents

will offer a UI
for selecting

between
tracks using

this label.

If the track is of kind
subtitles or captions,
then the srclang
attribute allows the
browser to select the
correct one based on
the user’s language
preferences.

400 APPENDIX I HTML next

$('menu').bind('click', function(event) {
 var action = $(event.target).text().trim();
 var p = $('#player video:first-of-type')[0];
 switch (action) {
 case 'Captions':
 p.textTracks[0].mode = "showing";
 p.textTracks[1].mode
 = "hidden";
 p.textTracks[2].mode = "hidden";
 break;
 case 'Subtitles':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "showing";
 p.textTracks[2].mode = "hidden";
 break;
 case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].mode = "showing";
 break;
 }
 return false;
});

The complete listing is available as index-vtt-3.html in the book’s code download.

 If you experiment with this latest listing, you’ll note that clicking the Descriptions

button doesn’t do anything. This is because tracks of kind description aren’t

intended for visual display but for aural accompaniment. But this does give us an

opportunity to experiment with the rest of the Text Track API. In the next section

you’ll use the API to extract the text content from the description track.

I.2.3 The Text Track API

You got a glimpse of the Text Track API in section I.2.2, where you used the mode

attribute. In this section, you’ll go into more depth, covering reading individual

cues from a track and listening to events that are fired when the active cue changes.

To begin, you will use the API to grab text from the description track you added in

section I.2.2. Figure I.6 shows the basic idea; when the Descriptions button is clicked,

content from the track is shown.

Listing I.11 Changing the track shown with JavaScript

Use the text of the button
to determine the action.

You can get at the text tracks
through the textTracks array
on the <video> element.

In this case, you
know which

tracks are
which, so you

can access them
directly. You

could use the
kind attribute

or any other
DOM methods

to work out
which is which.

Whether or not the track is
displayed is determined by the
mode property of the track
(more on this in I.2.3).

DISABLED, HIDDEN, and
SHOWING are available
as properties of TextTrack
(see table I.3).

Figure I.6 JavaScript has been used to

extract the text content of the normally

invisible description track and

display it on the screen.

401Media text tracks: providing media subtitles and captioning

Before you dive into the code, review table I.3, which lists the properties and methods

of the Text Track API.

The property you need here is the activeCues array, or a set of cues that should be

displaying currently. Displaying the text from the active cue of the description track

is as simple as grabbing the first element of the array and using the text property, as

shown in the following listing. Replace the last case in the select statement in list-

ing I.11 with this one.

case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].mode = "showing";
 $('#desc').html(p.textTracks[2].activeCues[0].text);
 break;

As you might guess from listing I.12, the cue objects have their own API. Each cue is of

type TextTrackCue; a complete list of properties is shown in table I.4.

Table I.3 The Text Track API

Name Type Description

kind String property The kind of text track, corresponds to the kind attribute.

label String property A human-readable label, corresponds to the label attribute.

language String property The language of the track, such as en-US, corresponds to the

srclang attribute.

mode Integer property The mode of the track: DISABLED (the track will not be loaded),

HIDDEN (the track will be loaded but not displayed), or

SHOWING (the track will be loaded and displayed if appropriate).

cues Array property An array containing the individual cues from the track.

activeCues Array property An array containing the cues that apply to the current point in

the media.

addCue() Method Add a cue to the cues array.

removeCue() Method Remove a cue from the cues array.

Listing I.12 Display the active cue

Table I.4 The TextTrackCue API

Attribute/method Type Description

track TextTrack The track to which this cue belongs.

id string Unique identifier for the cue.

startTime double The time the cue starts.

The mode property
seen in listing I.10. The activeCues

array is made up
of TextTrackCue
objects.

402 APPENDIX I HTML next

There’s a working version of this code in index-vtt-4.html in the code download in

case you don’t want to piece it together from the snippets here. If you load it, play the

video and click the Descriptions button a few times; you should see the descriptions

appear below the video. But you’ll also probably see the odd error message like that

shown in figure I.7.

 The error in figure I.7 can have two main causes:

■ There isn’t a cue available for the current time.

■ The text track hasn’t loaded yet.

endTime double The time the cue ends.

pauseOnExit boolean Returns true if the media will pause at the end of

the cue.

vertical string Returns a string describing the TextTrack writing

direction. Either empty (horizontal), "rl" for vertical

growing left, or "lr" for vertical growing right.

snapToLines boolean Returns true if the cue is set to render at a point

that’s a multiple of the height of the starting line plus

the starting point or false if its position is a point

at a percentage of the overall size of the video.

line long (or "auto") Returns a number giving the position of the line or

"auto" if there are multiple cues.

position long A number giving the position of the text of the cue

within each line, to be interpreted as a percentage of

the video

size long A number giving the size of the box within which the

text of each line of the cue is to be aligned, to be

interpreted as a percentage of the video.

align string "start", "middle", "end", "left", or

"right".

text string The text of the cue.

getCueAsHTML() DocumentFragment Returns the text of the cue as HTML.

Table I.4 The TextTrackCue API (continued)

Attribute/method Type Description

Figure I.7 An error trying to access the currently active cue in the text track

403Media text tracks: providing media subtitles and captioning

Determining whether there is a cue currently available follows the normal rules of

JavaScript; simply do a test like if (typeof p.textTracks[2].activeCues[0] !==

'undefined') before attempting to access the text property. In most real-life cases,

you’ll do this as a matter of course. But it’s clearly the second issue that’s the problem

here because our description cue file has no gaps in its time coverage. One approach

to solving the second issue would be to listen for the load event of the text track, some-

thing we’ll discuss further in the next section when you learn about events. In the

meantime, we’ll look at two alternative approaches to solving the second issue:

■ Loading all the text tracks in advance

■ Checking to see if the text track has loaded

LOADING THE TEXT TRACKS IN ADVANCE

Unless the default attribute is applied to the track, it will be in the default mode of

DISABLED. For the browser to load the tracks, you need to set them to either HIDDEN

or VISIBLE. It’s easy enough to do this in the ready event you already have in your

code, as shown in the following listing.

$(document).ready(
 function() {
 $('.playlist').bind('click', change_video);
 var p = $('#player video:first-of-type')[0];
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "showing";
 p.textTracks[2].mode = "hidden";

Find the complete working example in the index-vtt-4a.html file.

CHECKING TO SEE IF THE TRACK IS LOADED

Text tracks have a ready state similar to other dynamically loadable objects (for example,

XMLHTTP requests). The complete list of values for text tracks is shown in table I.5.

Clearly, all you now need to do is check that the readyState of the track is 2 before you

attempt to access the text property. The next listing shows an updated descriptions

case for the menu-handling function.

Listing I.13 Adjust the document ready event

Table I.5 Track readyState values

State Value Description

NONE 0 The track has not been loaded.

LOADING 1 The track is in the process of being loaded.

LOADED 2 The track has been loaded.

ERROR 3 Attempting to load the track led to an error.

The document ready event
you’re already using.

The three new lines are added here. If
you have more than three tracks, you
might consider using a loop instead.

404 APPENDIX I HTML next

case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].mode = "hidden";
 var t = v.find('track[kind="descriptions"]');
 if (t[0].readyState == 2) {
 $('#desc').html(p.textTracks[2].activeCues[0].text);
 }
 break;

Find the complete working example in the index-vtt-4b.html file.

I.2.4 Using TextTrack events

Although the examples in the previous sections show some useful techniques and

allow you to explore the API, it’s more in keeping with JavaScript to deal with text

tracks in an event-driven style. The track element has a load event that allows you

to call a function when loading is complete in the same way you’ve done hundreds

of times before. Because we have limited space here, you’re not going to do that

right now; instead, you’re going to learn about an event that’s specific to timed

tracks: cuechange.

 The cuechange event is fired every time a new cue is to be displayed. If you handle

the cuechange event, then instead of showing the current description whenever the

user clicks the Menu button, you can instead show the descriptions at the appropriate

time. The following listing updates the switch statement in the menu handler to

attach an event to the description track’s oncuechange property when the Descrip-

tions button is clicked.

switch (action) {
 case 'Captions':
 p.textTracks[0].mode = "showing";
 p.textTracks[1].mode = "hidden";
 p.textTracks[2].oncuechange = null;
 $('#desc').html('');
 break;
 case 'Subtitles':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "showing";
 p.textTracks[2].oncuechange = null;
 $('#desc').html('');
 break;
 case 'Descriptions':
 p.textTracks[0].mode = "hidden";
 p.textTracks[1].mode = "hidden";
 $('#desc').html(p.textTracks[2].activeCues[0].text);
 p.textTracks[2].oncuechange = function() {
 if (typeof this.activeCues[0] !== 'undefined') {

Listing I.14 Check the track ready state

Listing I.15 Listening to the cuechange event

Use standard
jQuery to get the
descriptions track.

The ready state is
available on the
track element.

If the captions or
subtitles are
playing, remove
the oncuechange
event handler.

When the user clicks
the Descriptions
button, attach an
oncuechange
handler.

405Media text tracks: providing media subtitles and captioning

 $('#desc').html(this.activeCues[0].text);
 }
 };
 break;
}

Now when the user clicks the Descriptions button, the descriptions will be updated

automatically as the cues change. Grab file index-vtt-5.html to try it for yourself.

 Although you’ve used the API to read the descriptions in this section, a more com-

mon use would be to perform an action at a particular time with the media. If you

refer to table I.2, you’ll note that the last kind of track is metadata. This can be used

for any kind of data you want to use from within your scripts; for example, you could

have a series of cues populated with data in JSON format.

 Before we move on to other things, let’s

take a look at styling the cues as they appear

on the video.

I.2.5 Styling text tracks

Text tracks can contain simple markup.

Typographical elements like and <i>

are allowed. Figure I.8 shows an updated

captions file in action.

 The new version of the captions file is

shown in the following listing.

WEBVTT

1
00:00:00.400 --> 00:00:01.500
<i>Players line up</i>

2
00:00:01.800 --> 00:00:02.900
<i>Offense gets ready</i>

3
00:00:03.500 --> 00:00:04.600
<i>The ball is snapped</i>

4
00:00:05.000 --> 00:00:07.000
<i>It's a pass</i>

5
00:00:08.000 --> 00:00:10.000
<i>It's picked off</i>

In the future it will also be possible to style the cues in CSS using the ::cue pseudo;

unfortunately, Chrome hasn’t yet implemented this.

Listing I.16 A cue file with simple formatting

The body of the handler
is the same code you
were using already.

Figure I.8 Captions using the <i> element

406 APPENDIX I HTML next

 That’s enough media APIs and features for now. For the remainder of this chapter,

you’re going to learn about experimental APIs that will be particularly useful for

games or mobile devices (or games on mobile devices!).

I.3 APIs for gaming and mobile

This section groups together a set of HTML5 APIs that are targeted at gaming, with

particular reference to gaming on mobile devices. In this section you will

■ Build a test bed, which you’ll use to explore the APIs

■ Target mouse events at a single element with setCapture

■ Expand an element to full screen

■ Replace mouse events with touch events

■ Replace mouse events with orientation events

■ Use the vibration and battery APIs

■ Use the pointer lock API to enable immersive experiences

I.3.1 Preparing a test bed—the return of Wilson

We need something with which to demonstrate all these APIs, so initially you’re going

to build a simple canvas app (see chapter 6 for background), which draws an object

that will then follow the mouse around the screen. You’ll use this as the basis for all

the experiments until the end of the appendix, so it’s worth spending time under-

standing how to put it together even if the techniques are familiar to you.

 Your starting point for API exploration is a Wilson head, which follows your mouse

pointer around. The result is shown in figure I.9.

 The process for creating this test bed is as follows:

■ Step 1: Create a basic page with a <canvas> element.

■ Step 2: Create a function that draws an image at a particular position on

the canvas.

■ Step 3: Detect and record mouse movement.

■ Step 4: Update the position of the image each time the animation is updated.

Figure I.9 We have a Wilson following our

mouse pointer! Debugging information

displays in the background showing the

values of important variables.

407APIs for gaming and mobile

STEP 1: CREATE A BASIC PAGE WITH A CANVAS ELEMENT

To start, you need a simple HTML5 document like the one shown in figure I.10.

 The code for figure I.10 is shown in the following listing. In addition to the code in

this listing, you’ll need the requestAnimationFrame polyfill from https://gist.github.com/

1579671 that you used in chapter 8. It’s also in the code download.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Canvas with HTML5 new features</title>
 <script>
 function go() { }
 function draw_welcome(){
 var canvas = document.getElementById('canvas');
 canvas.width = 400;
 canvas.height = 300;
 if (canvas.getContext) {
 var ctx = canvas.getContext('2d');
 ctx.font = "24pt sans-serif";
 ctx.fillText('Click to start ',
 canvas.width/2-120,
 canvas.height/2);
 }
 }
 window.addEventListener("load", draw_welcome, false);
 </script>
</head>

Listing I.17 Example app page framework

Figure I.10 A simple test

bed for exploring APIs for

gaming and mobile

applications

The go() function, which will
be doing most of the setup in
this and later sections.

Function to display a
welcome message
when the page loads.

Attach the function
to the load event.

https://gist.github.com/1579671
https://gist.github.com/1579671

408 APPENDIX I HTML next

<body>
 <h1>Gaming and mobile testbed</h1>
 <canvas id="canvas" onclick="go()"></canvas>
</body>
</html>

STEP 2: CREATE A FUNCTION TO DRAW AN IMAGE AT A PARTICULAR POSITION

Our image will be the Wilson character from chapter 7, this time in canvas form.

Because you’ll need to maintain state information about where Wilson is, what he’s

aiming for, and how quickly he’s moving toward it, the function to draw Wilson will be

part of an object. Listing I.18 shows the initial version of this. It’s a long and mostly

irrelevant listing as far as the new features are concerned, but the rest of the examples

won’t work without this bit of code, so you need it. There’s no need to understand it

thoroughly. This code should go between the go() function and the draw_welcome()

function in listing I.17.

var wilson = {
 x: 0,
 y: 0,
 target_x: 0,
 target_y: 0,
 v_x: 0,
 v_y: 0,
 draw: function (canvas) {
 var tl_x = wilson.x – 70;
 var tl_y = wilson.y - 70;
 if (canvas.getContext){
 var context = canvas.getContext('2d');
 context.beginPath();
 context.arc(tl_x + 70, tl_y + 70,
 70, 0, 2 * Math.PI, false);
 context.fillStyle = 'yellow';
 context.fill();
 context.beginPath();
 context.arc(tl_x + 45, tl_y + 57,
 7, 0, 1 * Math.PI, true);
 context.moveTo(tl_x + 100,tl_y + 57);
 context.arc(tl_x + 95,tl_y + 57,
 7, 0, 1 * Math.PI, true);
 context.fillStyle = '#777777';
 context.fill();
 context.beginPath();
 context.arc(tl_x + 70,tl_y + 90,
 30, 0, 1 * Math.PI, false);
 context.lineTo(tl_x + 100,tl_y + 90);
 context.fillStyle = '#ffffff';
 context.fill();
 context.stroke();
 context.fillStyle = 'black';
 context.lineWidth = 3;

Listing I.18 The wilson object

Variables to store
the current state
of Wilson.

For ease of use, you’re
storing the center point,
but the drawing code
works from the top-left
corner down, so calculate
the offset here.

409APIs for gaming and mobile

 context.lineJoin = 'round';
 context.lineCap = 'round';
 context.beginPath();
 context.moveTo(tl_x + 30,tl_y + 40);
 context.lineTo(tl_x + 30,tl_y + 70);
 context.lineTo(tl_x + 60,tl_y + 70);
 context.lineTo(tl_x + 60,tl_y + 40);
 context.lineTo(tl_x + 30,tl_y + 40);
 context.moveTo(tl_x + 60,tl_y + 60);
 context.lineTo(tl_x + 80,tl_y + 60);
 context.moveTo(tl_x + 80,tl_y + 40);
 context.lineTo(tl_x + 80,tl_y + 70);
 context.lineTo(tl_x + 110,tl_y + 70);
 context.lineTo(tl_x + 110,tl_y + 40);
 context.lineTo(tl_x + 80,tl_y + 40);
 context.stroke();
 }
 }
}

STEP 3: DETECT AND RECORD MOUSE MOVEMENT

Next, record the mouse movement. The function in the following listing will add an

event listener to the <canvas> element, which updates the wilson object when mouse

movement is detected. Add this code directly after the wilson object you added in list-

ing I.18.

function get_mouse_pos(obj, evt){
 var top = 0, left = 0;
 while (obj && obj.tagName != 'BODY') {
 top += obj.offsetTop;
 left += obj.offsetLeft;
 obj = obj.offsetParent;
 }
 var mouseX = evt.clientX - left + window.pageXOffset;
 var mouseY = evt.clientY - top + window.pageYOffset;
 return { x: mouseX, y: mouseY };
}
function follow_mouse() {
 var canvas = document.getElementById('canvas');
 var context = canvas.getContext('2d');
 canvas.addEventListener('mousemove', function(evt){
 var mousePos = get_mouse_pos(canvas, evt);
 wilson.target_x = mousePos.x;
 wilson.target_y = mousePos.y;
 }, false);
};

Note that you’re not making any attempt to update the canvas within this handler. You

want all drawing to happen in the requestAnimFrame loop to minimize resource usage,

so this function simply records the position and exits. If the browser is ready to make use

of the position, it will; otherwise, it will be replaced by the next mousemove event.

Listing I.19 Listen to mouse events and update Wilson’s target position

Calculate the mouse position
relative to the top left of a
given element.

Set up the event
listener to capture
mouse movement.

410 APPENDIX I HTML next

STEP 4: UPDATE THE POSITION OF THE IMAGE EACH TIME THE ANIMATION IS UPDATED

So now you need a function to be called each animation frame to move Wilson toward

the current mouse position. The two functions in the listing that follows should be

added to the wilson object so that you can use them later.

get_v: function(t,c) {
 var v = Math.floor(Math.sqrt(t*2) – Math.sqrt(c*2));
 if (isNaN(v)) { v = 0; }
 if (v == 0 && c != t) { v = (t - c) / Math.abs(t – c); }
 return v;
},
update_xy: function() {
 wilson.v_x = wilson.get_v(wilson.target_x,wilson.x);
 wilson.v_y = wilson.get_v(wilson.target_y,wilson.y);
 wilson.x += wilson.v_x;
 wilson.y += wilson.v_y;
 if (isNaN(wilson.x) || wilson.x < 0) { wilson.x = 0; }
 if (isNaN(wilson.y) || wilson.y < 0) { wilson.y = 0; }
},

The code in the previous listing is a bit rough and ready, but it will produce a fairly

natural-looking deceleration toward the target point everywhere but at the edges with-

out your having to worry about mapping floating point numbers into an integer coor-

dinate space. When you write your killer gaming app based on this sample, you should

definitely spend a little more time on it!

 Now you’re ready to hook the various components together in the go() function.

Replace your go() function from listing I.17 with the version in the following listing.

function go() {
 var canvas = document.getElementById('canvas');
 canvas.width--;
 canvas.width++;
 if (canvas.getContext) {
 var context = canvas.getContext('2d');
 wilson.x = canvas.width/2;
 wilson.y = canvas.height/2
 wilson.target_x = wilson.x;
 wilson.target_y = wilson.y;
 wilson.draw(canvas);
 follow_mouse();
 (function anim_loop(){
 requestAnimFrame(anim_loop);
 canvas.width--;
 canvas.width++;
 wilson.update_xy();

Listing I.20 Move Wilson toward the target position

Listing I.21 Draw Wilson

Calculates
how far to
move the

current
position to
the target

position; the
farther away,
the faster it

will move.

If the previous
calculation produced an
invalid number, use zero.

If the motion is 0 but
the points don’t yet
match, move 1 pixel in
the correct direction.

Update the x and
y velocities.

Add the velocity
to the current
position.

Check that the bounds haven’t been
exceeded in some way.

Clear the
canvas.

Set Wilson’s draw point
to be the midpoint of
the canvas.

Draw
Wilson.

411APIs for gaming and mobile

 wilson.draw(canvas);
 })();
 }
}

Now that you have a basic example application in place, let’s look at some APIs!

I.3.2 The Mouse Event Capture API: continuing movement beyond the

bounds of an element

The first API you’re going to look at is Mouse Event Capture, comprising the set-

Capture() and releaseCapture() methods. The problem this API is trying to solve is

that mouse events immediately stop the moment the mouse pointer moves outside of

the element where they’re being captured. The problem is illustrated in figure I.11.

NOTE The Mouse Event Capture API is not yet part of any standard, but that’s
more because no one has decided where to put it than that it’s not useful or
won’t be standardized. The HTML5 and W3C recommendation requirement
of “two compatible implementations” has already been met. It’s possible it will
appear in the DOM Level 3 specification.

Mouse Capture N/A 4 5.5 N/A N/A

Figure I.11 Although the

mouse pointer has moved to

the right, Wilson has not

followed because the pointer

movement occurred outside

of the bounds of the element.

412 APPENDIX I HTML next

This is obviously annoying behavior if your user is controlling a game with their

mouse, because as soon as the mouse pointer leaves the element, the game piece

they’re manipulating will stop responding. Figure I.12 shows the difference when

setCapture() is used (you’ll just have to trust that I did the same thing with the

mouse pointer—or download the sample code and try it for yourself).

 The next listing shows how you could use the event capturing API to work around

the issue. It’s a replacement for the follow_mouse() function you implemented in the

previous section.

function follow_mouse() {
 var canvas = document.getElementById('canvas');
 var context = canvas.getContext('2d');
 function mouse_down(e) {
 e.target.setCapture();
 e.target.addEventListener("mousemove",
 mouse_moved, false);
 }
 function mouse_up(e) {
 e.target.removeEventListener("mousemove",
 mouse_moved, false);
 }
 function mouse_moved(evt){
 var mousePos = get_mouse_pos(canvas, evt);

Listing I.22 Following the mouse with setCapture()

Figure I.12 With the

capture events API Wilson

continues to follow the

pointer when it leaves the

element or even the

browser window.

The setCapture() method
needs to be called inside
a mousedown event.

The movement-tracking
function is the same as
before except it’s now a
declared function instead
of an anonymous one.

413APIs for gaming and mobile

 wilson.target_x = mousePos.x;
 wilson.target_y = mousePos.y;
 }
 canvas.addEventListener('mousedown', mouse_down , false);
 canvas.addEventListener('mouseup', mouse_up , false);
};

That’s all you need to know about capturing mouse events on an element, but there’s

an alternative approach you might want to consider. Instead of attempting to capture

mouse movement as it moves outside the element, you could make the element take

up the full screen. You’ll learn about the Full-Screen API in the next section.

I.3.3 The Full-Screen API: expanding any element to full screen

The Full-Screen API allows any element to expand to take up the entire screen. The

element will be the only thing displayed; no browser chrome will be visible. Figure I.13

shows Wilson in full-screen mode in Firefox12. The text “Press ESC at any time to

exit fullscreen” will fade out after a few seconds; it’s added as a security measure so

that it’s obvious to users that they’ve entered full-screen mode. Otherwise, a nefari-

ous script could simulate their entire desktop in order to steal passwords and other

personal information.

 A summary of the Full-Screen API is shown in table I.6.

For best results here,
implement additional
bounds checking on
Wilson’s movement;
otherwise, he’ll leave
the canvas at the
right or bottom.If you comment out this line, then mouse events will continue to

be captured by the canvas after the mouse button is released.

Figure I.13 Wilson entering full-screen mode in Firefox with the user information

overlay showing

414 APPENDIX I HTML next

ENTERING FULL-SCREEN MODE

Entering full-screen mode is quite straightforward, even accounting for experimental

browser implementations. Undo any changes you made to your example in section I.3.2,

and then place the code from the following listing at the top of your go() function.

function go() {
 var canvas = document.getElementById("canvas");
 if (canvas.requestFullScreen) {
 canvas.requestFullScreen();
 } else if (canvas.mozRequestFullScreen) {
 canvas.mozRequestFullScreen();
 } else if (canvas.webkitRequestFullScreen) {
 canvas.webkitRequestFullScreen();
 }

STYLING THE FULL-SCREEN BACKGROUND

If you try your new example in both Firefox and Chrome, you’ll immediately notice a

compatibility issue: Firefox defaults the full-screen background to black; Chrome

defaults it to white. Fortunately, this problem can be overcome with CSS. Check out

the following listing, which uses the experimental :full-screen pseudo class to set a

consistent background color.

canvas:-moz-full-screen {
 background: #006;
 outline: none;
}
canvas:-webkit-full-screen {
 background: #006;
 outline: none;

Table I.6 The Full-Screen API

Property/event name Type

requestFullscreen() Method Ask for an element to go to full screen.

fullscreenEnabled Read-only boolean Is the page currently in full-screen mode?

fullscreenElement Read-only enabled If full screen is enabled, this property will be set

to the element that’s full screen.

fullscreenchange Event The fullscreenEnabled state has changed.

Full-Screen API 15 9 N/A N/A N/A

Listing I.23 Request FullScreen for the <canvas> element

Listing I.24 Set CSS styles that only apply in full-screen mode

requestFullScreen must be
called from an event handler.
In this case the go() function
is being called from a click
event, so you’re okay.

The browser has
implemented
the standard.

Mozilla’s experimental
implementation.

Chrome’s experimental
implementation.

415APIs for gaming and mobile

}
canvas:fullscreen {
 background: #006;
 outline: none;
}

EXITING FULL-SCREEN MODE

Now that the full screen has a pleasant dark-blue background in all browsers, the next

issue to consider is what happens when the user exits full-screen mode by hitting Esc.

In a more complex app, you may want to pause an activity or take the opportunity to

switch to a different mode of interaction. To do this, listen to the fullscreenchange

event. Our next listing has some example code.

document.addEventListener("fullscreenchange", function () {
 console.log(document.fullscreen);
}, false);
document.addEventListener("mozfullscreenchange", function () {
 console.log(document.mozFullScreen);
}, false);
document.addEventListener("webkitfullscreenchange", function () {
 console.log(document.webkitIsFullScreen);
}, false);

Feel free to experiment with these events further; we’re not going to go into any more

detail. In the next section, you’re going to jump to mobile; to get full advantage you

should have an iPhone or Android device handy.

I.3.4 The Device Orientation API: controlling on-screen movement by

tilting a device

The Device Orientation API delivers events to your web page that correspond to the

movement of the device. The device can be rotated around three axes; have a look at

figure I.14.

Listing I.25 Add a listener to the fullscreenchange event

Device Orientation API 7/A3 3.6 N/A N/A iOS4.2

Alpha Beta Gamma

Figure I.14 The directions of

motion used in the Device

Orientation API. (Based on

diagrams at https://developer

.mozilla.org/en/DOM/

Orientation_and_motion_data_

explained.)

https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained
https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained
https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained
https://developer.mozilla.org/en/DOM/Orientation_and_motion_data_explained

416 APPENDIX I HTML next

Figure I.15 shows Wilson in full-screen mode on an Android device being controlled

by the Device Orientation API, although the angle of the device is hard to tell from a

flat screenshot!

 So how do you take advantage of the Device Orientation API? It all depends on the

deviceorientation event. The following listing adapts the now inaccurately named

follow_mouse() function to listen to this event. For this listing to work, you’ll need a

device with a built-in accelerometer such as an Android or iOS phone or tablet.

function follow_mouse() {
 var canvas = document.getElementById('canvas');
 var context = canvas.getContext('2d');
 function handleOrientation(orientData) {
 var absolute = orientData.absolute;
 var alpha = orientData.alpha;
 var beta = orientData.beta;
 var gamma = orientData.gamma;
 wilson.v_x = -1 * beta;
 wilson.v_y = gamma;
 }
 window.addEventListener("deviceorientation",
 handleOrientation, true);
};

Because of the slightly different approach in setting the velocity—with mouse events

you’re aiming at a target; with orientation events you’re linking the velocity directly to

Listing I.26 Update the follow_mouse() function to use device-orientation data

Figure I.15 Full-screen mode in Firefox Android version, using device orientation

to control Wilson

A flag indicating whether the
orientation returned is in the
context of earth’s coordinate
frame or relative to the device.

Rotation around
the z-axis in
degrees ranging
between 0 and 360.

Rotation around the
x-axis in degrees ranging
between -180 and 180.

Rotation
around the

y-axis in
degrees ranging

between -90
and 90.

Plug the beta and gamma rotation directly into
the wilson object’s velocity properties.

417APIs for gaming and mobile

the angle—the update_xy() function in the wilson object also needs updating. The

following listing has the code.

update_xy: function(canvas) {
 wilson.x += wilson.v_x;
 wilson.y += wilson.v_y;
 if (isNaN(wilson.x) || wilson.x < 0) { wilson.x = 0; }
 if (isNaN(wilson.y) || wilson.y < 0) { wilson.y = 0; }
 if (wilson.x > canvas.width) { wilson.x = canvas.width; }
 if (wilson.y > canvas.height) { wilson.y = canvas.height; }
},

FUTURE IMPROVEMENTS: LOCKORIENTATION

If you play with this example on your mobile device, you’ll probably notice a minor

annoyance: Everything is set up assuming landscape mode, but as you rotate the

device, it’s very easy to flip the orientation to portrait mode. At the moment your

only option is to detect the orientation change and adjust your code to deal with

both portrait and landscape modes. But plans are afoot to provide web apps with the

same ability to lock orientation that native apps get. Unfortunately, experimental

implementations aren’t yet available.

I.3.5 The Vibration API: accessing a mobile device’s vibration function

Mobile devices offer alternative methods for feedback as well as the alternative meth-

ods for input you looked at in the preceding sections. The Vibration API is a proposal

from Mozilla to provide access to a mobile’s built-in vibration function. You can adapt

the example from section I.3.3 to vibrate when Wilson hits the edges of the screen by

adjusting the update_xy() function again, as shown in the next listing.

update_xy: function(canvas) {
 wilson.x += wilson.v_x;
 wilson.y += wilson.v_y;
 if (isNaN(wilson.x) || wilson.x < 0) {
 wilson.x = 0;
 navigator.mozVibrate(50);
 }
 if (isNaN(wilson.y) || wilson.y < 0) {
 wilson.y = 0;
 navigator.mozVibrate(50);
 }

Listing I.27 Update Wilson’s X and Y positions

Vibration API N/A 11 N/A N/A N/A

Listing I.28 Vibrate when screen edges are reached

No need to calculate the
velocity; use it directly.

The bounds
of Wilson’s
movement are
no longer limited
to the bounds of
mouse movement
in the element, so
add a check to
keep him in view.

Vibrate for 50
milliseconds.

418 APPENDIX I HTML next

 if (wilson.x > canvas.width) {
 wilson.x = canvas.width;
 navigator.mozVibrate(50);
 }
 if (wilson.y > canvas.height) {
 wilson.y = canvas.height;
 navigator.mozVibrate(50);
 }
},

The Vibration API can also create a pattern if you pass it an array rather than a single

number. The values are again times in milliseconds, but now they alternate between

vibrating and not vibrating. The following listing shows an example of this.

navigator.mozVibrate([100,
 100,
 200,
 200]);

I.3.6 Battery API: adjusting application processing based

on battery life

The Battery API allows you to adjust how much processing your app does depending

on the state of the battery. In a real app, you could avoid doing any heavy processing

or reduce the number of network connections when the battery is low. In our example

app, there isn’t much opportunity to cut back processing, so you’re just going to draw

less of Wilson as the battery level drops. Figure I.16 shows the end result in Firefox on

an Android phone.

The Battery API consists of four properties and four events. See the summary in table I.7.

Listing I.29 Vibrating in a pattern

Table I.7 The Battery API

Property/event name Type Description

charging Read-only boolean Is the power connected?

chargingTime Read-only double Seconds remaining until the battery

is charged.

Vibrate for 50
milliseconds.

Vibrations.
Pauses.

Figure I.16 By integrating the

Battery API, you can make your

app do less work as the charge

level drops.

419APIs for gaming and mobile

In this example you’re just going to take advantage of the charging and level prop-

erties. The following table shows the browser compatibility; this API will work on

mobile devices but also laptops.

For this example, you can either continue working with the code from the previous

section or, if you don’t have access to a mobile phone, you can use the code from

section I.3.3 as a starting point. The changes required to the draw() function are

shown next.

draw: function (canvas, battery) {
 var tl_x = wilson.x - 70;
 var tl_y = wilson.y - 70;
 if (canvas.getContext){
 var context = canvas.getContext('2d');
 context.beginPath();
 context.arc(tl_x + 70, tl_y + 70,
 70, 0, 2 * Math.PI, false);
 context.fillStyle = 'yellow';
 context.fill();
 if (battery.charging
 || (!battery.charging
 && (battery.level > 0.5))) {
 context.beginPath();
 //...
 }

dischargingTime Read-only double Seconds remaining until the battery is dis-

charged.

level Read-only double A value between 0.0 and 1.0 representing

the current battery charge level, where 1.0

is full.

chargingchange Event The value of charging has changed.

chargingtimechange Event The chargingTime has changed.

dischargingtimechange Event The dischargingTime has changed.

levelchange Event The level has changed.

Battery API 20 10 N/A N/A N/A

Listing I.30 Using the battery object in the draw function

Table I.7 The Battery API (continued)

Property/event name Type Description

The battery object is passed into the draw
function so the browser-compatibility code
can be all in one place.

Always draw the
yellow circle.

If the battery is
charging...

...or the battery isn’t
charging and...

...the battery charge level
is above 50%, then draw
the eyes and mouth.

This code is
the same as
before and

has been
elided for

brevity.

420 APPENDIX I HTML next

 if (battery.charging) {
 context.fillStyle = 'black';
 //...
 }
 }
}

As the annotation mentions, the battery object needs to be passed in, which necessi-

tates a small change in the go() function. The next listing shows the code for getting a

reference to the battery status and passing it to wilson.draw().

var battery = navigator.battery ||
 navigator.mozBattery ||
 navigator.webkitBattery;
wilson.draw(canvas, battery);

That’s enough mobile excitement for now; in the next section you’re going back to

the desktop and the Pointer Lock API, a necessary component of most 3D games.

I.3.7 The Pointer Lock API: tracking mouse motion instead

of pointer position

Pointer lock may sound like it’s another way of doing setCapture, but it’s targeted at a

different use case. Whereas setCapture allows you to continue tracking the mouse

pointer position even when it moves outside the target element, pointer lock takes

the pointer position out of the equation entirely. Instead of tracking the position

of the mouse pointer, it tracks motion from the mouse itself. The difference is that the

pointer position is limited by the bounds of the screen; the mouse can carry on mov-

ing. This is crucially important in immersive games like first-person shooters, where

the mouse is used to orient the player. Figure I.17 shows an example taken from

http://media.tojicode.com/q3bsp/; note that the mouse pointer doesn’t even appear.

 The Pointer Lock API involves only a few properties, methods, and events. A sum-

mary is shown in table I.8.

Listing I.31 Passing the battery object to the draw() function

Table I.8 The Pointer Lock API

Property/event name Type Description

requestPointerLock() Method Ask for the pointer to be locked.

pointerLockElement Read-only element If the pointer is locked, this property will be set

to the element that requested it.

pointerlockchange Event The pointer lock status has changed.

pointerlockerror Event There was an error requesting pointer lock.

Draw only the glasses if
the battery is charging.

This code is the same as before
and has been elided for brevity.

http://media.tojicode.com/q3bsp/

421APIs for gaming and mobile

The Pointer Lock API has experimental implementations in Chrome (with the --enable-

pointer-lock command-line switch) and Firefox.

To experiment with the Pointer Lock API, you’re going to need a world to explore.

Although ideally you’d create your own 3D world, that would take quite some time

(please refer to chapter 9 if you’d like to give it a go). In the meantime, you can fake a

world with a panoramic photograph. A suitable large image is included in the code

download. The following listing shows where you can add the image.

<canvas id="canvas" onclick="go()">

</canvas>

You’ll take this image and add it as a background to the <canvas> element. Because

the image is 9073 pixels wide, it should stretch across more than a single screen on all

but the largest of displays. Figure I.18 shows the initial screen in Firefox 14.

 The first requirement is a function to draw a correctly scaled slice of the image on

the canvas, as shown in listing I.33.

Pointer Lock API 18 14 N/A N/A N/A

Listing I.32 Add a background image to canvas

Figure I.17 Pointer lock in action along with WebGL; note that the mouse pointer

isn’t visible.

422 APPENDIX I HTML next

function draw_background(canvas,image,x_offset) {
 var scale = canvas.height / image.height;
 var x = x_offset * scale;
 var slice = canvas.width / scale;
 var ctx = canvas.getContext('2d');
 ctx.drawImage(image,
 x, 0, slice, image.height,
 0, 0, canvas.width, canvas.height);
}

The next listing shows the code to activate the Pointer Lock API. This code should go

at the top of the go() function.

canvas.requestPointerLock = canvas.requestPointerLock ||
 canvas.mozRequestPointerLock ||
 canvas.webkitRequestPointerLock;
function on_full_screen() {
 canvas.requestPointerLock();
 follow_mouse();
}
document.addEventListener("fullscreenchange",
 on_full_screen, false);
document.addEventListener("mozfullscreenchange",
 on_full_screen, false);

Listing I.33 Draw a segment of the background image

Listing I.34 Request pointer lock when the mode changes to full screen

Figure I.18 Wilson exploring a London park

Calculate a scaling factor to match
the image to the canvas height.

Use the scaling factor to convert
the offset into a screen length.

Use the scaling factor to convert
the screen width into an image
offset so you can grab a correctly
scaled slice of the image.

Map the different
custom implementations
to a single function.

The request for a pointer
lock must be made inside
a fullscreenchange event.

423Summary

document.addEventListener("webkitfullscreenchange",
 on_full_screen, false);

function pointer_lock_change() {
 if (document.pointerLockElement === canvas ||
 document.mozPointerLockElement === canvas ||
 document.webkitPointerLockElement === canvas) {
 console.log("Pointer Lock was successful.");
 } else {
 console.log("Pointer Lock was lost.");
 }
}
document.addEventListener("pointerlockchange",
 pointer_lock_change, false);
document.addEventListener("mozpointerlockchange",
 pointer_lock_change, false);
document.addEventListener("webkitpointerlockchange",
 pointer_lock_change, false);

function pointer_lock_error() {
 console.log("Error while locking pointer.");
}
document.addEventListener("pointerlockerror",
 pointer_lock_error, false);
document.addEventListener("mozpointerlockerror",
 pointer_lock_error, false);
document.addEventListener("webkitpointerlockerror",
 pointer_lock_error, false);

Next, you need to update the follow_mouse() function again, as shown in the follow-

ing listing. The Pointer Lock API adds two additional properties to a mouse event:

movementX and movementY. These can be used in a similar way to the orientation

events in section I.35.

function follow_mouse() {
 document.addEventListener("mousemove", function(e) {
 wilson.v_x = e.movementX ||
 e.mozMovementX ||
 e.webkitMovementX ||
 0;
 wilson.v_y = e.movementY ||
 e.mozMovementY ||
 e.webkitMovementY ||
 0;
 offset += wilson.v_x;
 }, false);
};

I.4 Summary

In this appendix you’ve had a glimpse of the future of HTML5. A lot of effort is

directed toward accessing device capabilities (webcams, microphones, orientation

Listing I.35 Follow the mouse movement

The <pointerlockchange>
event will be fired when the
request is made; you can
test for success of the
request by checking the
document.pointerLockElement.

The <pointerlockerror>
event will let you investigate
any errors that may occur.

424 APPENDIX I HTML next

sensors, and so on) as well as toward building seamless gaming and application experi-

ences (full-screen and pointer lock) to rival native applications. As these standards are

finalized and implementations mature over the next few years, we should see a lot of

exciting new web applications. Now that you’ve read this appendix (and the rest of this

book), you should be well equipped to take an active role in developing the World

Wide Web of tomorrow!

425

appendix J
Links and references

In this appendix, you’ll find a chapter-by-chapter list of many of the links to useful

resources, articles, and demos strewn throughout HTML5 in Action. Links for each

chapter start with important applications and references for building your apps.

Near the bottom of each link list, you may also find interesting tidbits such as fun

links, live demos, and extra libraries for future projects.

Chapter 1: Introduction

■ Modernizr—http://modernizr.com/

■ Remy Sharp’s HTML5 Shiv (included in Modernizr)—http://remysharp.com/

2009/01/07/html5-enabling-script/

■ WHATWG—www.whatwg.org/

■ Hello! HTML5 and CSS3—www.manning.com/crowther/

■ ARIA Attributes—http://mng.bz/6hb2

■ Google’s Microdata Vocabulary—http://schema.org/

■ Is This HTML5?— http://mng.bz/PraC

Chapter 2: Forms and validation

■ Webshims Lib—http://afarkas.github.com/webshim/demos/

■ H5F—https://github.com/ryanseddon/H5F

■ Webforms2—https://github.com/westonruter/webforms2

■ html5Widgets—https://github.com/zoltan-dulac/html5Forms.js

■ Modernizr Polyfills—http://mng.bz/cJhc

Chapter 3: Working with files on the client side

■ File API—www.w3.org/TR/FileAPI/

■ File Writer API—www.w3.org/TR/file-writer-api/

http://modernizr.com/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://remysharp.com/2009/01/07/html5-enabling-script/
http://www.whatwg.org/
http://www.manning.com/crowther/
http://mng.bz/6hb2
http://mng.bz/PraC
http://afarkas.github.com/webshim/demos/
https://github.com/ryanseddon/H5F
https://github.com/westonruter/webforms2
http://mng.bz/cJhc
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/file-writer-api/
http://schema.org/
https://github.com/zoltan-dulac/html5Forms.js

426 APPENDIX J Links and references

■ File System API—www.w3.org/TR/file-system-api/

■ Geolocation API—www.w3.org/TR/geolocation-API/

Chapter 4: Messaging
■ Apache—http://apache.org/

■ PHP—http://php.net/

■ MySQL—http://dev.mysql.com/

■ jQuery—http://jquery.com/

■ Node.js—http://nodejs.org/

■ Connect—https://github.com/senchalabs/connect

■ Mustache—http://mustache.github.com

■ WebSocket-Node—https://github.com/Worlize/WebSocket-Node

■ EventEmitter.js—https://github.com/Wolfy87/EventEmitter

■ Polyfills EventSource.js—http://mng.bz/ahX0

Chapter 5: Web storage and working offline
■ Offline API (in HTML5 spec)—http://mng.bz/5u67

■ IndexedDB—www.w3.org/TR/IndexedDB/

■ Web SQL (deprecated)—www.w3.org/TR/webdatabase/

Chapter 6: 2D Canvas
■ HTML5 Canvas Cheat Sheet—http://mng.bz/5r65.

■ explorercanvas—http://code.google.com/p/explorercanvas/

■ Game Physics guide—http://gafferongames.com/game-physics/

■ playtomic—https://playtomic.com/

■ MDN window.requestAnimationFrame—http://mng.bz/D14s

■ requestAnimationFrame for polyfills—http://mng.bz/h9v9

■ JavaScript Madness: Keyboard Events—http://unixpapa.com/js/key.html

■ Sketchpad—http://mudcu.be/sketchpad/

■ Rome: 3 Dreams of Black—http://ro.me

■ ImpactJS—http://impactjs.com/

Chapter 7: SVG
■ Official SVG page—www.w3.org/Graphics/SVG/

■ W3C SVG animation—www.w3.org/TR/SVG11/animate.html

■ Canceling animation requests—http://mng.bz/3Eq1

■ Raphael.JS—http://raphaeljs.com/

■ Svgweb—http://code.google.com/p/svgweb/

■ SVG a element—http://tutorials.jenkov.com/svg/a-element.html

■ svg-edit—https://code.google.com/p/svg-edit/

http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/geolocation-API/
http://apache.org/
http://php.net/
http://dev.mysql.com/
http://jquery.com/
http://nodejs.org/
https://github.com/senchalabs/connect
http://mustache.github.com/
https://github.com/Worlize/WebSocket-Node
https://github.com/Wolfy87/EventEmitter
http://mng.bz/ahX0
http://mng.bz/5u67
http://mng.bz/5r65
http://code.google.com/p/explorercanvas/
http://gafferongames.com/game-physics/
https://playtomic.com/
http://mng.bz/D14s
http://mng.bz/h9v9
http://unixpapa.com/js/key.html
http://ro.me/
www.w3.org/TR/IndexedDB/
http://impactjs.com/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/SVG11/animate.html
http://mng.bz/3Eq1
http://raphaeljs.com/
http://code.google.com/p/svgweb/
http://tutorials.jenkov.com/svg/a-element.html
https://code.google.com/p/svg-edit/
www.w3.org/TR/webdatabase/
http://mudcu.be/sketchpad/

427Links and references

Chapter 8: Video and audio

■ FFmpeg—http://ffmpeg.org

■ FFmpeg Mac Version—http://ffmpegmac.net/

■ FFmpeg2theora—http://v2v.cc/~j/ffmpeg2theora/

■ Image Filters with Canvas—http://mng.bz/3OsN

■ Playback Rate Bug—https://bugzilla.mozilla.org/show_bug.cgi?id=495040

Chapter 9: WebGL

■ WebGL Cheat Sheet—http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html

■ OpenGL ES Shading Language Reference—http://mng.bz/1TA3

■ Introduction to 3D graphics—http://mng.bz/STHc

■ Simple JavaScript Inheritance—http://ejohn.org/blog/simple-javascript-inheritance/

■ Sylvester—http://sylvester.jcoglan.com/

■ Wolfram Identity Matrix explanation—http://mathworld.wolfram.com/IdentityMatrix

.html

■ Opera’s Introduction to WebGL—http://mng.bz/4Lao

■ MDN 2D WebGL content and WebGL utilities file—http://mng.bz/2585

■ MDN WebGL rotation—http://mng.bz/O5Z2

■ MDN WebGL tutorials—https://developer.mozilla.org/en/WebGL

■ Joe Lambert’s Request polyfill—http://mng.bz/3epb

■ Learning WebGL—http://learningwebgl.com

■ three.js—https://github.com/mrdoob/three.js/

■ Copperlicht—www.ambiera.com/copperlicht/

■ IEWebGL—http://iewebgl.com/

■ Secrets of the JavaScript Ninja—www.manning.com/resig/

■ X-Wing WebGL app—http://oos.moxiecode.com/js_webgl/xwing/

■ Vlad Vukićević’s blog—http://blog.vlad1.com

http://ffmpeg.org/
http://ffmpegmac.net/
http://v2v.cc/~j/ffmpeg2theora/
http://mng.bz/3OsN
https://bugzilla.mozilla.org/show_bug.cgi?id=495040
http://blog.nihilogic.dk/2009/10/webgl-cheat-sheet.html
http://mng.bz/1TA3
http://mng.bz/STHc
http://ejohn.org/blog/simple-javascript-inheritance/
http://sylvester.jcoglan.com/
http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/IdentityMatrix.html
http://mng.bz/4Lao
http://mng.bz/2585
http://mng.bz/O5Z2
https://developer.mozilla.org/en/WebGL
http://mng.bz/3epb
http://learningwebgl.com/
https://github.com/mrdoob/three.js/
http://www.ambiera.com/copperlicht/
http://iewebgl.com/
http://www.manning.com/resig/
http://oos.moxiecode.com/js_webgl/xwing/
http://blog.vlad1.com/

